
Strengthening memory safety in Rust: exploring
CHERI capabilities for a safe language

Nicholas Wei Sheng Sim
Wolfson College

A dissertation submitted to the University of Cambridge
in partial ful�lment of the requirements for the degree of
Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: nwss2@cam.ac.uk

August 2020

Declaration

I, Nicholas Wei Sheng Sim of Wolfson College, being a candidate for the M.Phil in Advanced Computer
Science, hereby declare that this report and the work described in it are my own work, unaided except
as may be speci�ed below, and that the report does not contain material that has already been used to
any substantial extent for a comparable purpose.

Total word count: 14,620

Signed:

Date:

This dissertation is copyright ©2019 Nicholas Wei Sheng Sim.
All trademarks used in this dissertation are hereby acknowledged.

Acknowledgements

I thank the following people for their help with this work:

My supervisors, Simon W. Moore and Khilan Gudka, for guidance which was essential in focussing
the project, and especially for my early familiarisation with CHERI and its LLVM fork;

Alex Richardson, for repeated help with the LLVM compiler and debugging when Rust broke its
assumptions, as well as the CheriBSD emulator;

David Chisnall, Andrew Paverd, and colleagues at Microsoft Research, for fruitful discussions
on the application of capabilities, sealing, and expounding the utility of mixing capability and non-
capability pointers;

and �nally the Rust community and Ralf Jung, for fueling my engagement with, and understanding
of, Rust semantics.

Abstract

Strengthening memory safety in Rust: exploring CHERI capabilities for a safe language

* * *

The lack of memory safety in C still causes untold numbers of security vulnerabilities up to the present
day. Both Rust, a safe programming language, and CHERI, an architecture providing hardware capabil-
ities, claim to provide low-overhead memory safety to prevent exploits.

This work explores the implications and interactions of CHERI capabilities for a safe language, Rust.
Previous work typically considered capabilities and type-safe languages as mutually exclusive protec-
tions; instead I present evidence that the two mechanisms are complementary. To do this, I implement
Rust compilation to a CHERI architecture, demonstrating that capabilities are e�ective in preventing
previous Rust vulnerabilities and detailing how they can be used to maximise memory safety in Rust
with minimal overhead.

(14,620 words)

Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Background . 1
1.1.2 The Rust programming language . 1
1.1.3 Capabilities and the CHERI architecture . 2

1.2 Contributions . 2
1.3 Report structure . 3

2 Background and related work 5
2.1 Capabilities . 5
2.2 CHERI: Capability Hardware Enhanced RISC Instructions 5

2.2.1 Memory capability model . 5
2.2.2 Implementation overview . 5
2.2.3 Capability sealing . 6
2.2.4 Using non-capability code . 6

2.3 Why Rust? . 6
2.3.1 Bounds checks in Rust . 7
2.3.2 Broad similarity to C . 7
2.3.3 Object lifetimes and temporal safety . 8

2.4 Survey of related work . 8
2.4.1 Hardbound . 8
2.4.2 AddressSanitizer . 8
2.4.3 Sandcrust: Sandboxing Rust’s FFI . 9
2.4.4 Robusta: Sandboxing JNI code . 9
2.4.5 CHERI compartmentalisation and the JNI . 9
2.4.6 RustBelt: Veri�cation of Rust’s safety properties 9

2.5 Context . 10

3 The Rust Programming Language 11
3.1 Overview . 11

3.1.1 The Rust programming language . 11
3.2 Object ownership and borrow semantics . 11

3.2.1 Ownership semantics . 12
3.2.2 Caveat on memory leaks . 12

ix

3.3 De�nitions of pointers and indices . 12
3.3.1 Implications . 12

3.4 Unsafe Rust . 13
3.4.1 Optimisation with Unsafe Rust . 13

3.5 Array bounds checks . 13
3.5.1 Optimisation by eliding checks . 13
3.5.2 Removing bounds checks with dependent types 16

3.6 Summary . 16

4 Compiling Rust for CHERI 17
4.1 Strategy . 17

4.1.1 Host platform . 17
4.1.2 Rust functionality on CHERI . 17
4.1.3 Compiler optimisations . 18

4.2 The Rust compiler and LLVM . 18
4.2.1 Incompatibilities with the LLVM backend . 18
4.2.2 Compiler usage . 18

4.3 Changes to the compiler . 19
4.3.1 Pointer width of 128 bits . 19
4.3.2 Address spaces . 20
4.3.3 Targeting CHERI . 21

4.4 Changes to core libraries . 21
4.4.1 libcore: formatting . 22
4.4.2 libcore: UTF-8 validation . 22
4.4.3 libcore: memchr . 22
4.4.4 liballoc: macro invocation . 22

4.5 Summary . 22

5 Evaluation 23
5.1 Objectives . 23
5.2 Errors leading to memory violations in Rust . 24

5.2.1 Pushing to a VecDeque: o�-by-one error leads to out-of-bounds write 24
5.2.2 Slice repeat: integer over�ow leads to bu�er over�ow 25
5.2.3 Out-of-bounds indexing into a reversed slice . 26
5.2.4 Iterator method violates Rust’s uniqueness of shared references 28

5.3 Implications of Rust semantics for CHERI targets . 28
5.3.1 Ownership gives complementary temporal safety 28
5.3.2 Stronger pointer provenance model in Rust . 29
5.3.3 Safer code patterns yields easier porting to CHERI 29
5.3.4 Comparable performance to C . 29
5.3.5 Larger pointer size can be o�set by removing redundant bounds information . 30

5.4 Spatial integrity in Rust from CHERI capabilities . 30
5.4.1 Mitigation of traditional vulnerabilities . 31
5.4.2 Bounds checks removal . 31
5.4.3 Sub-object bound enforcement . 31
5.4.4 Use-after-free elimination in Safe Rust . 31

5.5 Capability sealing to protect Rust objects . 32
5.5.1 Preserving object immutability in Unsafe Rust 32
5.5.2 Preserving object immutability across FFI boundaries 32

x

5.5.3 Protecting data from callback functions . 33
5.5.4 Fine-grained object protection . 33
5.5.5 E�cacy and costs of sealing . 33

5.6 Improved safety of FFI calls . 33
5.6.1 Prevention of use-after-free from FFI . 34
5.6.2 Enforcement of object boundaries . 34
5.6.3 Protection of system calls . 34

5.7 Strengthening unsafety . 34
5.7.1 Rationale for Unsafe Rust . 34
5.7.2 From unsafe code to unde�ned behaviour . 35
5.7.3 Restricting unde�ned behaviour with CHERI capabilities 35

5.8 Hybrid ABI: Minimising the memory footprint of CHERI capabilities 36
5.8.1 Safe Rust is memory safe . 36
5.8.2 Pointer provenance for Unsafe Rust . 36
5.8.3 Reduction in memory overhead of capabilities 36
5.8.4 Limitations . 37

5.9 Distinguishing pointer width and index sizes . 37
5.9.1 De�nition of usize . 37
5.9.2 Representing every memory address . 37
5.9.3 Rust context . 38
5.9.4 Integer types in C . 38

5.10 Porting safe languages to capability architectures . 39
5.10.1 Weaknesses in language runtimes . 39
5.10.2 Unsafe code . 39
5.10.3 Language semantics and implementation . 39
5.10.4 Non-optimisation: type systems . 39

5.11 Summary . 40

6 Conclusion 41
6.1 Context and review . 41
6.2 Challenges . 42
6.3 Scope of contributions . 42
6.4 Further work . 43

6.4.1 Pointer-width sized indices . 43
6.4.2 Runtime and memory overhead analysis . 43
6.4.3 Fine-grained capability protection . 44

Bibliography 45

xi

xii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Background

Many security vulnerabilities are bugs arising from the lack of memory safety in C; an example of a
traditional exploit is the bu�er over�ow. The C language speci�cation includes a number of situations
that lead to unde�ned behaviour : akin to a deduction of ‘falsity’ in logic, after these points the state of the
program might be arbitrary. Unde�ned behaviour allows compilers to assume that certain conditions
never hold, enabling powerful (but dangerous) optimisations.

Consequently, crucial checks can be optimised away and invariants violated by compilers, resulting in
executables vulnerable to memory attacks [50]. Many systems and compiler programmers frequently
underestimate the pervasiveness of unde�ned behaviour in code that appears to function correctly,
and gloss over the subtleties of the C standard [35]. These represent opportunities for vulnerabilities
to arise when code is optimised away by compiler transformations [55].

1.1.2 The Rust programming language

Rust is billed as a fast, safe language designed for concurrent systems programming. Safe Rust claims
to o�er type- and memory-safety, and provides guarantees that no dangling pointers or any unde�ned
behaviour will occur [42], giving both spatial and temporal memory protection.

To achieve this, it uses compile-time and runtime checks, relying on a combination of LLVM optim-
isations and Unsafe Rust code to minimise the performance overhead. However, as with all code that
requires �ne control over memory, mistakes in writing Unsafe Rust give rise to potential vulnerabilities.

Vulnerabilities in Rust

There have been several unrelated bugs and potential vulnerabilities in Rust, all believed to be unex-
ploited. Some are preventable with CHERI capabilities, and these are examined in Section 5.2:

• Standard library: bu�er over�ow when pushing to a VecDeque, CVE-2018-1000657 [2, 24].

• Standard library: bu�er over�ow in slice repeat, CVE-2018-1000810 [3, 39, 13].

• Standard library: out-of-bounds access indexing into a reversed slice [22, 21].

• Standard library: unsafe Iterator method duplicates exclusive mutable references, violating
temporal safety [8].

1

• Standard library: safe trait implementation allows arbitrary typecasting and thus bu�er over-
�ows, CVE-2019-12083 [4, 40].

Others are not mitigated by capabilities:

• Standard library: attempt to read uninitialised memory after appending to a VecDeque [26].

• Compiler plugin: documentation plugin allowed arbitrary code execution by a di�erent user
while running the compiler, CVE-2018-1000622 [1, 38].

Rust is a language with an explicit priority of memory safety, developed by a community of safety-
and security-conscious programmers. Collectively, these �aws demonstrate that even such favourable
conditions are not su�cient to eliminate unsoundness and vulnerabilities. On the contrary, more tools
are needed to build and operate reliable and secure software.

1.1.3 Capabilities and the CHERI architecture

The CHERI instruction set architecture replaces pointers with capabilities, which stop unauthorised
access of memory as they are unforgeable in software [58]. Capabilities protect data by associating
bounds information and access permissions, giving programs �ne-grained mechanisms to enforce the
security principles of least privilege and intentional use [37].

Just as using capabilities in C programs prevents unintended operations on memory, applying capabil-
ities to Rust provides an additional layer of safety, guarding against undiscovered vulnerabilities.

1.2 Contributions

Traditionally, capability mechanisms have been evaluated against C, but the main objective of this pro-
ject was to evaluate the utility of porting Rust, a safe language, to CHERI. In summary, the contributions
of this work are:

• A summary of features and techniques Rust uses to provide memory safety guarantees, and
how it optimises these. The di�erences between Rust and other languages, as they pertain to
capability architectures and CHERI. A survey of work relating to safe languages and capability
platforms, and e�orts to manage unde�ned behaviour and safety in programming languages.

• Patches to the Rust compiler (1.35) and core libraries which enable compilation to the new
cheri-unknown-freebsd target utilising 128-bit CHERI capabilities. These compile programs
which use the Rust core library without optimisations.

• An analysis of previous errors leading to vulnerabilities in Rust, the memory safety implica-
tions, and how they are mitigated using capabilities. Two demonstrative microbenchmarks of
vulnerabilities in the Rust standard library, shown to be functional on x86 but prevented by
CHERI capabilities.

• An evaluation of the interactions between Rust and CHERI protection mechanisms, and how
hardware capabilities enhance Rust in general. An exploration of how features provided by the
CHERI architecture can be used to enforce Rust guarantees where its compiler and runtime
cannot, even as programs call into untrusted code and the kernel.

• Techniques and approaches that may be used to reduce the overheads posed by memory
protection when combining the two approaches. A consideration of how the duplication of
functionality can be minimised, and how doing so a�ects the provided safety guarantees.

2

• Details of the relevant concerns for future implementers porting Rust to CHERI, or examining
CHERI on other safe languages. This includes a discussion on problematic points of the Rust
language which may need to be clari�ed, changed, or implemented di�erently.

This work is not intended to be a complete implementation of CHERI support in the Rust compiler.
Rather, it prototypes support for replacing pointers with capabilities in Rust, to illustrate the bene�t of
CHERI capabilities for a safe language.

1.3 Report structure

This report is divided into six chapters, detailing the above contributions and their context:

Chapter 2 An overview of CHERI capabilities and their mechanism, and how they can be used to
improve memory safety. Motivation for the choice of Rust as a safe programming language to
study. A survey of work relating to other hardware capability implementations, other mech-
anisms that provide memory safety, and similar techniques for safe languages including Java
and Rust.

Chapter 3 An introduction to the properties of Rust relevant to memory safety and this project in
particular. This includes a brief discussion of its semantics, Unsafe Rust, and some common
optimisation patterns.

Chapter 4 The main changes made to the Rust compiler and core libraries that enable compila-
tion to CHERI. This chapter outlines the scope of my implementation, hence evaluation, and
presents challenges encountered that currently prevent a more complete implementation of
Rust compilation to CHERI.

Chapter 5 A long chapter, and main contribution of this work. The evaluation of CHERI capabilities
for Rust: why Rust is an ideal language for capability protection, and how its safety is improved
by capabilities. This includes demonstration of capabilities against past vulnerabilities, how
they can rule out some unde�ned behaviour, and options for stronger protection and enforce-
ment of Rust guarantees by using features o�ered by the architecture. Concerns when porting
Rust to safe languages.

Chapter 6 The conclusion: recontextualisation of the work, challenges faced, and a detailed re-
capitulation of contributions outlined above. A discussion of future work in bringing Rust to
CHERI.

3

4

Chapter 2

Background and related work

This chapter de�nes and highlights the motivation for studying capabilities, and sketches their imple-
mentation under CHERI. It de�nes the property of monotonicity and discusses CHERI’s key design
principles. To contextualise this project, I justify the choice of Rust as a safe language, and conclude
the chapter with a survey of related work. An overview of the Rust language is included in Chapter 3.

2.1 Capabilities

Capabilities are traditionally known as unforgeable tokens of authority. CHERI provides memory cap-
abilities: unforgeable pointers to continuous regions in memory [60].

Capabilities have a long history: while the concept had been established beforehand, they were imple-
mented and expounded in Multics [7], and there is recurring interest in fat pointers today [15, 30]. They
can prevent common classes of attacks, such as the eternal bu�er over�ow (1,613 published CVEs in
2018 alone [36]), and obviate other mitigations, such as address-space layout randomisation and WˆX
protection against execution of writeable data.

A recurring theme in this work is the de�nition and usage of pointers. For instance, the proper usage
of a capability renders object bounds checks redundant: can this optimise bounds checks in Rust? We
will also see how CHERI’s implementation of capability pointers stretches a key language de�nition in
Rust due to its usage in the compiler.

2.2 CHERI: Capability Hardware Enhanced RISC Instructions

2.2.1 Memory capability model

CHERI extends the 64-bit MIPS ISA to support capabilities. Its design emphasises incremental adoption,
and the principles of least privilege and intentional use, to mitigate unintended vulnerabilities. Its hybrid
approach enables capability code to be used alongside non-capability code, allowing concentration on
higher-risk code and libraries [58].

2.2.2 Implementation overview

Capability coprocessor and registers

A capability coprocessor is used to implement the CHERI extensions. The coprocessor holds its own
register �le, creating a clear distinction between integers and capabilities. Instructions are added for

5

manipulating these capability registers, such as loads and stores, decreasing the bounds on capabilities,
and branching based on capability tags [60].

Memory tagging

To allow pointers to be stored anywhere in memory, an out-of-band tag bit is associated with each
(aligned) pointer-sized location in memory. If a location storing a capability is written to by a non-
capability instruction, this bit is cleared to preserve the unforgeability of pointers [60].

Capability manipulation

CHERI provides capability instructions for using capabilities, from those de�ning the bounds of a
capability, to loading from and jumping to addresses stored in capability registers. Instructions conform
to the property of monotonicity: they can only decrease privilege, so to preserve unforgeability [60].
Thus capability bounds (length) cannot be increased, nor can a read-only capability derive a read-write
one.

Protection mechanism

If an attempt is made to use a capability to access a di�erent object, or otherwise violate its permissions,
a hardware exception (trap) results.

2.2.3 Capability sealing

A capability may be sealed, marking it as immutable or non-dereferenceable [58]. Based on the object
type of a capability, the correct capability may be used to seal it; likewise another speci�c capability
may be used to unseal it, again allowing mutation and dereferencing.

Applications of sealing in Rust are seen in Sections 5.5 and 5.6.

2.2.4 Using non-capability code

Code that is not capability-aware is interoperable with capability code, through instructions that trans-
late between capabilities and integer pointers. The latter are protected by the default data capability,
stored in the implicit capability register. This allows protection of non-capability code from capability-
aware code and vice versa [60]. The contemporaneous usage of regular pointers and capabilities is
known as hybrid mode, whereas a program that exclusively uses capabilities is deemed to run in pure
capability mode [57].

This project evaluates Rust under pure capability mode only. The choice has proven to be a practical
one: in keeping consistent with LLVM’s memory model, the Rust compiler avoids manipulations that
commonly cause incompatibility with capabilities. Section 5.3.3 explains the reasons behind this claim.

2.3 Why Rust?

Most evaluations of capability implementations focus on the C language, as a kind of lowest common
denominator in computer systems. Further, its stereotypical memory unsafety precedes the reasonable
assumption that C programs would bene�t from capabilities, perhaps more so than a safe language
might.

6

Rust is an example of a safe language. The following sections brie�y motivate the choice of Rust as a
language on which to evaluate a capability platform; see Chapter 3 for an overview of language features
and semantics relevant to the use of capabilities.

Finally, it provides a foil to C evaluations of capabilities, in both adoption and utility of capabilities.

2.3.1 Bounds checks in Rust

1 idx:
2 lui $1, %hi(%neg(% gp_rel(idx)))
3 daddu $3, $1, $25
4 sltu $1, $4, $6 ; idx < arr.len()
5 beqz $1, .LBB3_2
6 move $2, $4 ; delay slot
7 dsll $1, $2, 3 ; offset = idx * 8 (i64 array)
8 daddu $1, $5, $1 ; ptr = &arr + offset
9 ld $2, 0($1) ; retval = *ptr

10 jr $ra
11 nop
12 .LBB3_2: ; prepare information for panic handler
13 daddiu $sp , $sp , -16
14 sd $ra , 8($sp)
15 sd $gp , 0($sp)
16 daddiu $gp , $3, %lo(%neg(% gp_rel(idx)))
17 ld $1, %got_page (. L__unnamed_2)($gp)
18 daddiu $4, $1, %got_ofst (. L__unnamed_2)
19 ld $25 , %call16(core:: panicking :: panic_bounds_check)($gp)
20 jalr $25
21 move $5, $2
22 break

Figure 2.1: Generated MIPS64 assembler for Rust’s intrinsic indexing on arrays and vectors, with bounds
checks. The relevant unchecked access occurs on lines 7–9. Rust instructs LLVM that the out-of-bounds
case is unlikely, but this does not appear in the generated code. Comments added for ease of reading;
panic_bounds_check string substituted in place of mangled version.

One of Rust’s safety features is runtime bounds checks on array accesses: Figure 2.1 shows an example.
As arrays have clear bounds, similar hardware checks also occur when dereferencing a CHERI capability.
If object bounds are set correctly, the runtime checks are redundant and could be removed as an
optimisation.

2.3.2 Broad similarity to C

While Rust espouses very di�erent design principles to C, it targets similar applications, such as systems
programming. It emphasises a small runtime, and its compilation and linking process is similar, as op-
posed to interpreted or JIT compiled languages. An evaluation using Rust is more immediately relevant
and readily comprehensible in the context of existing literature, and applicable in re-interpreting it.

FFI: calling into other languages

Rust de�nes a foreign function interface (FFI) that makes it trivial to link against C libraries, so a smaller
proportion of the Rust standard libraries need be considered for a meaningful evaluation (Section 4.1).

7

2.3.3 Object lifetimes and temporal safety

Rust uses object lifetimes instead of a garbage collector or placing the burden on users to manage
memory. Like manual memory management, this design enforces intentionality, but is enforced by the
compiler to prevent dangling pointers and use-after-free unsafety. This is a major feature preventing
temporal unsafety, an area for which capabilities have no universal remedy, unlike the spatial integrity
they frequently provide. As such, Rust has a built-in mechanism complementary to that provided by
capabilities, and the interaction between these is worth examining.

2.4 Survey of related work

Most work examining capability implementations involves C, whereas there has been work examining
the object-capability pattern in other languages, which I do not discuss.

The following sections provide an overview of memory safety techniques and their applicability to safe
languages, with special focus on FFI in Rust and the Java Native Interface. They give an overview of the
main objectives and costs involved in improving memory safety in safe languages, and demonstrate
that this is very much an ongoing area of research, with no obvious “best” solution.

2.4.1 Hardbound

Hardbound provides special instructions to set bounds on pointers, preventing out-of-bounds derefer-
ences [15]. Like CHERI, it has no mechanism to handle use-after-free or double-free errors, only identi-
fying invalid dereferences.

It emphasises minimal compiler and memory layout changes, making it theoretically adaptable to many
di�erent compilers, including compilers to safe languages such as Rust.

Woodru� et al. detail di�erences between Hardbound and CHERI [60]; for the purposes of this work,
much of the evaluation applies equally or similarly to Hardbound. Notable exceptions would include
pointer width compatibility,1 the comments on enforcing immutability, and protecting against abuse
through FFI functions.

2.4.2 AddressSanitizer

AddressSanitizer maintains shadow state to �nd memory errors, including bounds checks but also
use-after-free errors, with a limited possibility of detecting data races [47]. As it does not implement
object boundaries on pointers, a correctly chosen o�set could result in an out-of-bounds dereference
into another object.

It is implemented using LLVM infrastructure, and the primary use target is C code via Clang. There is
experimental support for compiling Rust with AddressSanitizer support, as well as the related Leak-
Sanitizer, MemorySanitizer, and ThreadSanitizer [5]. While it is not expected to be useful for Safe Rust
code, the main incentives for the Rust project appear to be supporting fuzz testing, �nding compiler
bugs, and checking unsafe code [29].

As such, it targets a subset of problems in Rust as CHERI capabilities do, albeit in software. While the
authors suggest that AddressSanitizer could be run in production code, it su�ers a considerable 2×
slowdown.

1Hardbound stores less information, retaining the pointer width.

8

2.4.3 Sandcrust: Sandboxing Rust’s FFI

Sandcrust is a set of macros and Rust compiler transformations which aim to sandbox and transform C
functions called from Rust [31]. Its primary means of achieving isolation is to execute library code in
a separate process from Rust caller, communicating via remote procedure calls (RPC) and pipes. This
avoids giving libraries access to memory which should not be shared, and frustrates attacks such as
control-�ow hijacking.

This approach comes with considerable overhead, with Lamowski et al. reporting slowdown factors
between 1.3× and 44×, albeit generally at the low end (1.5–8×). Considerable overhead is likely due to
data transfer.

CHERI avoids this overhead, and can call foreign functions in the same address space as the Rust
program. Interestingly, such a sandboxing scheme could protect data from inspection or modi�cation
by callback functions, similarly to capability sealing (Section 5.6). I do not discuss Sandcrust’s ancillary
functionality of wrapping C functions to �t Rust idioms, itself a valuable contribution.

2.4.4 Robusta: Sandboxing JNI code

The Java Native Interface (JNI) provides full access to the address space of a Java program, and JNI code
is completely trusted by Java’s security model. Robusta sandboxes native calls by intercepting calls to
native functions, building on Google’s Native Client. It also executes native code in a separate process,
again copying data as necessary. System calls pass through JVM permissions checks, extending the
Java security manager to native code [48]: in essence, a reference monitor in the JVM.

Native Client provides separation for the primary purpose of computation, reporting around 5% over-
head for computational tasks [62]; Siefers et al. give similar �gures for computational tasks on Robusta.
Conceivably, such a small overhead could also apply to sandboxing in Rust, on the same tasks and with
some optimisation. However, with less computational tasks, copying objects in and out of the sandbox
can lead to over 15× slowdown. These broadly correlate with Sandcrust’s results.

Note again that Robusta does more than improve memory safety: it also intercepts system calls to
ensure they are permitted by the Java security manager.

2.4.5 CHERI compartmentalisation and the JNI

As an alternative to process-based sandboxing, CheriBSD provides compartmentalisation for cross-
domain calls (cross-process and system calls). Watson et al. show that compartmentalisation with
CHERI capabilities vastly outperforms process-based approaches, as there is no data �ow overhead.
Compartmentalisation can also be used to restrict access to system calls and other dangerous operations,
including tampering with �le descriptors [59].

Chisnall et al. use compartmentalisation to sandbox JNI code, eliminating data �ow and domain crossing
overheads, and enabling sealing (Section 5.6 discusses this in a Rust context), among other bene�ts [12].
Like Robusta, this includes Java security manager checks on native code. They include a detailed
comparison of compartmentalisation to process-based sandboxing.

2.4.6 RustBelt: Veri�cation of Rust’s safety properties

One of Rust’s goals is to provide a good combination of low-level control and performance with the
high-level abstractions and safety. While the language and runtime have been designed with this in
mind, the claimed safety properties are not clear in light of the frequent unsafe implementations of
functions and data structures in the standard library [16].

9

Noting that the Rust language does not have formal semantics, Jung et al. de�ne _Rust, a language
modelled on a core subset of Rust. They proceed with a formalisation of this language, placing emphasis
on lifetimes and borrowing [28]. These notions are crucial to Rust’s temporal safety which underpins its
claims to be a safe language. Further, they give a framework for proving the soundness of unsafe code,
applying it to Rust primitives, including those that provide shared references and reference-counted
memory. They also include a more detailed view of Rust’s semantics than this work contains, as I focus
on its implementation rather than formalisation.

2.5 Context

This chapter brie�y introduced capabilities, which contrast with Rust’s ownership and lifetime se-
mantics in Section 3.2. It de�ned the basic mechanism and properties of the CHERI implementation
of capabilities, which are necessary for understanding the rest of this work, especially the evaluation
(Chapter 5); it then motivated the study of capabilities applied to safe languages in general, and Rust in
particular. The survey of related work again contextualises this project by comparison to other capabil-
ity mechanisms, and protection techniques used for other safe languages, from software fault isolation
to sandboxing.

10

Chapter 3

The Rust Programming Language

3.1 Overview

This chapter gives an overview of Rust and the major di�erences from comparable programming
languages. It focusses on semantic di�erences, rather than usability di�erences, although those also
make a signi�cant contribution to code safety.1 I also discuss some techniques and patterns used by
the Rust compiler and programmers for optimisation of Rust code.

For any future e�ort in porting Rust to CHERI, attention must be paid to pointer width and indices
(Sections 3.3 and 4.3.1). Currently, this e�ectively prevents Rust code from compiling properly for CHERI.

This work refers to version 1.35 of the Rust compiler.2

3.1.1 The Rust programming language

Rust is billed as a fast and safe systems programming language. It uses both compile-time and runtime
checks to prevent over�ows, widely employing fat pointers for built-in data structures [10]. For example,
the built-in Vector (Vec) stores data on its allocated capacity and actual length; a CHERI capability
pointer to the same vector would also track the allocated capacity as a boundary. This redundancy
suggests some room for optimisation.

3.2 Object ownership and borrow semantics

One of the guarantees Rust o�ers is that Safe Rust should never lead to dangling pointers or memory
leaks. Yet it does not have a garbage collector, or expose memory management. Instead, the compiler
couples strict ownership analysis with borrow and move semantics to determine the lifetime of an object.
As such, some programs which avoid use-after-free or other memory safety bugs may be semantically
invalid Rust.

1Usability di�erences include the lack of automatic typecasting, the explicit use of integer types (e.g. i32, or usize for
array indices), and the built-in test harness.

2Commit 2210e9a, nightly build of March 22nd, 2019.
Source: https://github.com/rust-lang/rust/commit/2210e9a6a99c4241d82e85ca71fd291d5ef91c7f.
Patches for CHERI compatibility: https://github.com/CTSRD-CHERI/rust/.

11

https://github.com/rust-lang/rust/commit/2210e9a6a99c4241d82e85ca71fd291d5ef91c7f
https://github.com/CTSRD-CHERI/rust/

1 // Lifetime ends; ‘v’ becomes uninitialised in caller.
2 // Caller is returned a vector , which could be ‘v’.
3 fn take(v: Vec <i32 >) -> Vec <i32 >;
4
5 // Borrowing references from the caller:
6 // ‘w’ is defined for the caller afterward and must not change
7 // ‘x’ is defined for the caller afterward but could have changed
8 fn borrow(w: &Vec <i32 >, x: &mut Vec <i32 >);

Figure 3.1: Function signatures for passing a Vec to a function. To prevent data races, only one code block
can contain a mutable (exclusive) reference to a variable, like x, at a time. Multiple immutable (shared)
references (e.g. w) are allowed.

3.2.1 Ownership semantics

Instead of passing objects by duplicating pointers, a function in Safe Rust will either take ownership of
an object, or borrow it mutably or immutably. Figure 3.1 shows some function signatures for moving
ownership or borrowing. In contrast to C, the emphasis is not on access, but the nature of the access.3
As such, pointers cannot be casually duplicated4 to cause data races or temporal unsoundness generally.

Ownership and borrowing are the foundations of Rust’s temporal safety guarantees. They make object
provenance clear, preventing bugs including use-after-free at compile time.

3.2.2 Caveat on memory leaks

An exception to the memory leak guarantee is the exposure of mem::forget in the core library as a safe
function. This allows a programmer to end an object’s lifetime without deallocating it. Such a pattern
might be used to avoid double-frees in circular data structures. Nevertheless, invoking this function can
create a leak, as can a knot-tied reference-counted data structure, though knot-tying is made di�cult
in light of the single mutable reference rule. Section 5.4.4 gives an example of a memory leak in Safe
Rust.

3.3 De�nitions of pointers and indices

In Rust, a usize is de�ned to be a pointer-sized integer, conventionally equivalent to C’s uintptr_t,
which may not be equivalent to size_t [63]. The width of a usize derives from the data layout’s pointer
width, 128 bits for a CHERI capability. Crucially, usize is used as the index size in Rust, for indexing
into arrays, structs, and all objects, and is hence passed to LLVM instructions such as getelementptr.

3.3.1 Implications

Having a 128-bit usize means that the Rust compiler instructs LLVM to generate 128-bit indexed
versions of intrinsics such as memcpy, in addition to indexing. However, not all bit widths for the
memcpy intrinsic are supported by all targets [34], and CHERI supports a bit width of 64 but not 128.

As it stands, this is an implementation detail which is the consequence of the language semantics.
Nevertheless, to target CHERI properly, Rust must either support pointer widths larger than the index
size, or use pointer widths di�erently in code generation. Section 4.3.1 explores the implementation in
more detail.

3References represent ownership of an object, rather than access to it.
4In Safe Rust.

12

3.4 Unsafe Rust

To provide Rust with more power, Unsafe Rust permits several additional actions [44]:

• Dereferencing a raw pointer

• Calling unsafe functions

• Accessing or modifying a mutable static variable

• Implementing an unsafe trait

While these seem fairly innocuous compared to abstractions in C, they impose signi�cant restrictions
on Safe Rust. It’s important to note that unsafety need not necessarily come from the unsafe code
block itself, but from the handling of inputs to the unsafe block. Section 5.2.2 shows a bug in a built-in
data structure caused by incorrect computation before an unsafe block, leading to a bu�er over�ow.

3.4.1 Optimisation with Unsafe Rust

As seen in Section 3.5, unsafe optimisations are used to avoid redundant checks, whether they are
duplicated or simply known to be within bounds. The core library uses unsafe code for unchecked
conversions, or other unchecked indexing, like into a Unicode string at a known character boundary.

Another example is to override the default allocation strategy when initialising a vector with data: there
is no need to �ll the allocated space with zeroes or poison values if it is guaranteed to be overwritten
before access. Naturally, there is scope for programmer error here: Section 5.2.1 discusses an o�-by-one
error in the standard library.

3.5 Array bounds checks

1 impl <T, I: SliceIndex <[T]>> Index <I> for Vec <T> {
2 type Output = I:: Output;
3
4 #[inline]
5 fn index(&self , index: I) -> &Self:: Output {
6 Index ::index (&**self , index)
7 }
8 }

Figure 3.2: Like built-in arrays, Rust’s Vec uses intrinsic indexing. The same bounds checks therefore apply
to random indexing into a Vec, or any structure built on one.

For spatial safety, Rust implements runtime bounds checks to prevent out-of-bounds accesses. This
may appear to harbour large overheads, although with optimisations many checks are elided. In fact,
bounds checks mainly apply to random indexing, as seen in Figure 2.1 (page 7). They also apply when
Rust’s intrinsic indexing is used, through the Index and IndexMut traits. For example, Figure 3.2 shows
that Vec uses this intrinsic, and therefore has bounds checks.

3.5.1 Optimisation by eliding checks

Figure 3.3 shows examples of bounds check elision in generated code, based on iterators and detecting
when the length is checked. This detection is basic, as we see in Figure 3.4: it is more e�ective to use
built-in iterators in general.

13

1 fn sum_iter(arr: &[i64]) -> i64 {
2 let mut sum: i64 = 0;
3 for x in r.iter() { sum += *x; }
4 sum
5 }
6 fn sum_foreach(arr: &[i64]) -> i64 {
7 let mut sum: i64 = 0;
8 arr.iter (). for_each (|x| sum += x);
9 sum

10 }
11 fn sum_builtin(arr: &[i64]) -> i64 {
12 arr.iter ().sum()
13 }
14 fn sum_loop(arr: &[i64]) -> i64 {
15 let mut sum: i64 = 0;
16 let mut i: usize = 0;
17 loop {
18 if i >= arr.len() { break }
19 sum += arr[i]; i += 1;
20 }
21 sum
22 }

1 sum_iter:
2 beqz $5, .LBB0_4
3 nop
4 dsll $3, $5, 3 ; i = arr.len() * 8
5 daddiu $2, $zero , 0 ; retval = 0
6 .LBB0_2:
7 ld $1, 0($4) ; *arr
8 daddu $2, $1, $2 ; retval += *arr
9 daddiu $3, $3, -8 ; i -= 8

10 bnez $3, .LBB0_2 ; until i == 0
11 daddiu $4, $4, 8 ; arr += 4 (delay slot)
12 jr $ra
13 nop
14 .LBB0_4:
15 jr $ra
16 daddiu $2, $zero , 0

Figure 3.3: Four ways to sum an array in Rust: the �rst three identically generate the shown MIPS assembler,
and could be considered idiomatic Rust. The fourth generates nearly the same code: it uses an index of 1
instead of 8, allowing the omission of lines 3–4! It also omits lines 12–13, which appear to be redundant.
Note that no bounds checks are present. Optimised code generated; comments added for ease of reading.

14

1 fn sum_checked(arr: &[i64]) -> i64 {
2 let mut sum: i64 = 0;
3 let mut i: usize = 0;
4 loop {
5 if i > arr.len() - 1 { break }
6 sum += arr[i]; i += 1;
7 }
8 sum
9 }

1 sum_checked:
2 daddiu $sp , $sp , -16
3 sd $ra , 8($sp)
4 sd $gp , 0($sp)
5 lui $1, %hi(%neg(% gp_rel(sum_checked)))
6 daddu $1, $1, $25
7 daddiu $gp , $1, %lo(%neg(% gp_rel(sum_checked)))
8 move $6, $5
9 daddiu $3, $5, -1

10 daddiu $2, $zero , 0
11 daddiu $5, $zero , 0
12 .LBB1_1:
13 sltu $1, $5, $6
14 beqz $1, .LBB1_4
15 nop
16 ld $1, 0($4)
17 daddu $2, $1, $2
18 daddiu $5, $5, 1
19 sltu $1, $3, $5
20 beqz $1, .LBB1_1
21 daddiu $4, $4, 8
22 ld $gp , 0($sp)
23 ld $ra , 8($sp)
24 jr $ra
25 daddiu $sp , $sp , 16
26 .LBB1_4:
27 ld $1, %got_page (. L__unnamed_1)($gp)
28 ld $25 , %call16(core:: panicking :: panic_bounds_check)($gp)
29 jalr $25
30 daddiu $4, $1, %got_ofst (. L__unnamed_1)
31 break

Figure 3.4: How not to sum an array in Rust. Observe that sum_checked is nearly identical to sum_loop in
Figure 3.3, save for the comparison on line 5. The compiler fails to detect that our accesses are safe due to
the small manipulation of the variable storing the length. Thus an additional branch instruction appears on
line 14. Optimised code generated; panic_bounds_check string substituted in place of mangled version.

15

Some common situations in which bounds checks are avoided:

Built-in binary search Checks avoided without unsafe code by providing more information to
compiler: uses slices instead of indices [49].

Built-in slice equality Similar to binary search, providing more information to the compiler
makes a di�erent iteration strategy faster without unsafe dereferencing [51].

Built-in iterators The default iterator applying to arrays (Figure 3.3) uses the unsafe get_unchecked
method5 implemented for the SliceIndex trait. In theory, this might be susceptible to an o�-
by-one error, but such a mistake is easily discovered in unit tests. Section 3.4 covered how
unsafe code is used for optimisation.

Built-in sorting Both built-in sorting implementations, timsort (stable) and quicksort (unstable)
use the unsafe get_unchecked method. They also use unsafe ptr methods to swap and write
elements.

Image processing Dröge demonstrates di�erent optimisation strategies without resorting to Un-
safe Rust, while still avoiding bounds checks and other unnecessary operations [17]. This is
achieved through strategic assertions and optimal use of iterators and other built-ins. Note
that similar optimisation through assertions may be fragile or made obsolete through updated
code generation, and that optimal use of built-ins may require knowledge of the underlying
(unsafe) implementations.

3.5.2 Removing bounds checks with dependent types

Finally, there is an experimental e�ort [52] to remove array bounds checks using dependent types,
using the principles described by Xi and Pfenning [61] and applied to Rust by Beingessner [6]. However,
this adds signi�cant compile-time overheads, as it necessarily utilises type-, lifetime, and ownership
checkers, which Rust runs before optimisations: this results in heavy computation to remove checks
that are usually avoided anyway.

3.6 Summary

This chapter introduced some important semantic characteristics of Rust, and showed how it provides
some of its memory safety guarantees. It then examined how Rust minimised the overheads of its
guarantees, and the tools that programmers employ to do the same. Both of these inform the evaluation
in Chapter 5.

Next, Chapter 4 considers the implementation of the Rust compiler and core libraries, and how they
interact with the CHERI ISA. The usize (Section 3.3) in particular is a de�nition that has not translated
well to the CHERI architecture, but is consistent with it, if interpreted carefully.

5This dereferences an array o�set without checking bounds. Other unchecked methods include string conversions.

16

Chapter 4

Compiling Rust for CHERI

This chapter discusses key details in compiling Rust for CHERI, as opposed to other architectures. It
details the strategy taken, thereby de�ning the scope of work in this project. To this end, I observe
signi�cant architectural di�erences that make compilation challenging, and consider design choices
for this and future work porting Rust to CHERI.

4.1 Strategy

4.1.1 Host platform

One contribution of this project is an extension of the Rust compiler to target FreeBSD on CHERI128.
This is achieved by cross-compilation from an amd64 FreeBSD host; other host platforms should work
if they are able to compile the CHERI SDK.

4.1.2 Rust functionality on CHERI

This extension exclusively targets pure capability mode, where all pointers are capabilities [57]. This
avoids the hurdle of dealing with multiple LLVM address spaces and pointer widths, not supported in
the Rust compiler (Section 4.3.2).

In order to evaluate Rust on CHERI, I identi�ed a minimal necessary subset of the standard library,
listed below. Not included is the bulk of the Rust standard library, which provides �lesystem and
network support, general IO, interfaces to operating system synchronisation and threading, and others.
I consider these not to have critical signi�cance to capabilities in standalone Rust programs.

libcore for key de�nitions of traits and types, typechecking, compiler intrinsics, and other fun-
damental operations. It also includes support for calling through foreign function interfaces
(FFI), Unicode and number formatting, etc. It could be thought of as a modern version of the
standard C headers, apart from the core de�nitions it provides, which would be built into a
compiler.

liballoc for heap allocation and built-in data structures and operations on them. liballoc also
included two (patched) vulnerabilities in the Rust standard library, demonstrated in the evalu-
ation (Sections 5.2.1 and 5.2.2).

Other parts of the standard library will compile for CHERI, but they are not as central to running Rust
programs. I have not included them in order to focus on evaluating the Rust compiler and a core set of
features.

17

Sections 4.3 and 4.4 detail modi�cations to the compiler and these libraries required to compile Rust
programs.

4.1.3 Compiler optimisations

Optimisations are not used. Optimisations are not supported at this point as they cause the Rust compiler
to invoke LLVM APIs with values not supported by the CHERI backend, such as o�sets of 128 bits.
Section 4.3.1 discusses related issues.

4.2 The Rust compiler and LLVM

Rust uses LLVM as a backend for compilation. The CTSRD project maintains a fork of LLVM with
support for the current CHERI implementation, extending the MIPS backend to support CHERI targets,
and generic code to handle capabilities [57].

4.2.1 Incompatibilities with the LLVM backend

Due to the pointer width and index size divergence (Section 3.3), two incompatibilities were found with
the CHERI LLVM backend. These have been �xed in the current version.

• Rust may attempt to generate an unusual pointer o�set when calling or returning from func-
tions.1

• Rust sometimes attempts to generate unaligned loads. This is not possible in the pure capability
ABI.2

Both of these were identi�ed as a result of extensive debugging and code generation failures, requiring
analysis across both the Rust compiler and LLVM.

The Rust project also maintains a fork of LLVM, with minor changes, and provide ‘known good’
combinations of LLVM and Rust compiler commits. This is a good starting point to �nd a CHERI-
supporting LLVM commit which will compile the Rust compiler.

4.2.2 Compiler usage

Enabling the cheri-unknown-freebsd target when building the Rust compiler necessitates compiling
the complete Rust standard library for CHERI, which is not possible at this stage. The default package
manager, Cargo, does not support this situation and cannot be used. I identi�ed and used two work�ows
for compiling programs:

Integrated compilation with Xargo

Xargo describes itself as a “sysroot manager”, meaning that it will (cross-)compile versions of the
libraries for target platforms. This is useful where binary releases do not exist for those platforms; it
allows the use of modi�ed libraries, and in particular it does not require that the entire standard library
is compiled.

By default it only compiles core; use of alloc is speci�ed through Xargo.toml. This approach is
recommended, although it can make code generation errors di�cult to debug.

1Fix accessible at https://github.com/CTSRD-CHERI/llvm-project/commit/39cfdf711a759a4799bd32f50af07f5f6f43c987;
thanks to Alexander Richardson.

2Fix accessible at https://github.com/CTSRD-CHERI/llvm-project/commit/d8e6acf3d4094270cd55b70341a6f9c4d032db81;
thanks to Alexander Richardson.

18

https://github.com/CTSRD-CHERI/llvm-project/commit/39cfdf711a759a4799bd32f50af07f5f6f43c987
https://github.com/CTSRD-CHERI/llvm-project/commit/d8e6acf3d4094270cd55b70341a6f9c4d032db81

Note that Xargo does not expect dependencies (e.g. libcore) to change! Therefore, it does not always
recompile a “sysroot” after modi�cations. Invoking it with a build tool might be advisable.

Scripted compilation with llc and Clang

This is the traditional compilation-and-linking process.

1. First, libraries are compiled as Rust libraries (.rlib) and dynamic libraries (.so). This is done
by using rustc, not Cargo.

2. Then, Rust programs are compiled to LLVM IR (again with rustc), manually specifying the
Rust libraries for de�nitions. One can compile to object code directly, but this step can be
helpful for debugging and ensuring that all the desired target attributes and �ags are passed
in the next step.

3. Next, llc is used to compile the LLVM IR to object �les.

4. Finally, Clang links against the CheriBSD sysroot.

I provide sample Make�les which use this process for the test programs in this project, including
appropriate command-line arguments.

4.3 Changes to the compiler

The cheri-unknown-freebsd target has several di�erences to most existing targets in the Rust com-
piler. This section documents these di�erences, their implications, and the modi�cations required to
compile Rust for CHERI.

4.3.1 Pointer width of 128 bits

Di�erences

Under pure capability mode in CHERI128, all pointers are 128-bit wide capabilities. The Rust compiler
has built-in support for 16-, 32-, and 64-bit pointers, through compile-time macros. The pointer width
is used to determine the usize3 (Section 3.3), o�sets, and sizes used for pointer operations.

Choices and implications

The 128-bit pointer width cannot be changed.

The Rust compiler has two de�nitions of the target’s pointer width: the target_pointer_width value
in the target speci�cation (Section 4.3.3), and the LLVM data layout string. These values must agree to
avoid alignment issues.

In any case, the value derived from data layout string is used in more than 50 locations in the compiler,
to determine the index size and pointer alignment, and for code generation among others. This includes
which index size to use when calling LLVM intrinsics, such as memset, and what size integer to provide
for an inttoptr call; CHERI only supports 64-bit integers for all these cases.

The immediately obvious solution is to support a 64-bit index size, but this is met with a non-functional
compiler. As Section 3.3 noted, the Rust language de�nes the usize to be equal to the pointer width.
This assumption is su�ciently widespread in the compiler to be impractical to change within the scope
of this project. However, if this de�nition is changed, or the de�nition of usize for typechecking

3The maximum index size.

19

compiled programs can be distinguished from the usage of index sizes for code generation, then the
changes in the next section may not be necessary.

Changes and limitations

This meant de�ning a usize, and exposing a 128-bit integer type from LLVM as suitable for this value.
This is not a functional problem: while 128-bit integer usage is not natively supported on CHERI, it is
merely slower and LLVM will generate the correct instructions. However, the overhead is signi�cant,
as seen in Figure 4.1.

1 bounds_usize128:
2 xor a5,a2,a0 ; xor upper bits of idx , len
3 sltu a6,a2,a0
4 xori a6,a6 ,0x1 ; cmp upper bits
5 sltu a7,a3,a1
6 xori a7,a7 ,0x1 ; cmp lower bits
7 movz a6,a7,a5 ; use lower bits if upper bits eq
8 bnez a6 ,10510 ; panic

1 bounds_usize64:
2 sltu v1,a2,a1 ; idx < len ?
3 beqz v1 ,1051c ; panic

Figure 4.1: Top: bounds check with 128-bit usize under CHERI; bottom: bounds check with 64-bit usize
under MIPS64. Bounds comparison code when calling into functions which index into a given slice; all code
before and after checks omitted.

The other change is to truncate or extend integer types before calls to LLVM intrinsics and pointer
operations. An example of the former is memcpy: if indexed by a 128-bit length, LLVM silently omits the
copy, as it is not de�ned in the CHERI backend. This change is problematic, as it is possible to miss out
the truncation or extension for some intrinsics, then be unaware that the compiler has omitted them.
Pointer operations are more limited: we need only concern ourselves with inttoptr and ptrtoint.
Here, we take performance penalties from generating excess instructions and 128-bit integer operations.

4.3.2 Address spaces

Di�erences

CHERI uses LLVM address space 200 for capabilities, and 0 for non-capability pointers. Supporting
pure capability mode only requires use of address space 200.

However, the Rust compiler currently only generates code that uses address space 0, the default address
space in LLVM. There is no support for multiple address spaces within or across compilation units
either.

Choices and implications

With pure capability mode, only one address space is required, thus the latter problem is avoided. In
any case, there is no requirement to support legacy code and pointer manipulation idioms in the scope
of this work, thus little reason to support the use of untagged pointers, and hence hybrid mode.

20

Changes and limitations

The main change was to make Rust aware of LLVM address spaces other than 0; it already speci�ed
this as the default. Previous work to support Rust on the AVR platform already (in principle) supported
address space 1 for functions, so the changes required were to determine the pointer width correctly
from the LLVM data layout string, and to ensure allocations were made to the correct address space,
again using the data layout string.

Based on the Rust codebase, it could be di�cult but far from impossible to support multiple address
spaces in Rust. A far bigger challenge, however, is to support code generation for multiple pointer
widths: it will therefore be impractical to consider compiling Rust programs in hybrid mode unless this
changes.

4.3.3 Targeting CHERI

Di�erences

The CHERI backend in LLVM is an extension of the big-endian 64-bit MIPS architecture. To target
FreeBSD, it has the triple cheri-unknown-freebsd .

Choices and implications

In this case, the question is not so much what to change, but where to change it. For some changes,
such as specifying the cheri128 CPU (the default being CHERI256), the Rust target speci�cation �les
had relevant �elds.

In other cases, such as specifying the purecap ABI (as opposed to the MIPS N64 ABI), no such mechan-
ism was present in the compiler. Here, either �elds could be added to the target speci�cation, or made
locally to their usage.

Changes and limitations

A target speci�cation was added to the Rust compiler, specifying the pure capability ABI, and the
CHERI128 CPU.

Instead of adding more �elds to the target speci�cation structure and code to parse these �elds, I decided
to make changes closest to where the data would be used. This minimised code changes. However, this
means that when targeting CHERI, pure capability mode would always be used: I do not consider this
an issue because the CheriBSD can also run programs compiled with the MIPS N64 ABI, which can also
be compiled by the Rust compiler. This choice should be revisited by if CHERI is to be made an o�cial
target in the Rust compiler, as it is slightly unergonomic, even if the ABI is not typically con�gured,
and is not speci�ed for other targets.

4.4 Changes to core libraries

The changes to the compiler in Section 4.3 were not su�cient to compile Rust programs. Tests and
benchmarks were not run against these libraries.

My attempts to compile the core libraries were cursory, only investigating them as far as their function-
ality was required to run test programs. Therefore, it is possible that there are problems which I have
not noticed. It is also possible that these changes might now be undone without a�ecting the success
of compilation: this is untested.

21

4.4.1 libcore: formatting

Three formatting methods were modi�ed:

• A string writing method, used for writing text to �les or the console, was changed not to
format strings before writing them. Thus variables cannot be printed.

• A pointer formatting method: this now prints a dummy string instead of an address. This was
previously broken by invalid ptrtoint calls.

• Number formatting: a method to print numbers in arbitrary radices. Oddly, some of the pattern-
matching code refused to compile.

These methods are not relevant to my evaluation as I have used the C printf function for printing and
formatting.

4.4.2 libcore: UTF-8 validation

The UTF-8 validation routine fails to compile into the core library: I did not attempt to debug this,
instead removing references to it. Again, this is not relevant to my evaluation as I have not used
Unicode.

4.4.3 libcore: memchr

The memchr implementation is similar in functionality to its C version. It performs pointer manipulation
and bitwise operations, and did not compile due to an iterator issue.

4.4.4 liballoc: macro invocation

Only a minor change was made: when returning an empty vector, to use Vec::new() instead of the
macro vec![]. This was required because the macro was not in scope of the library as I debugged it.

4.5 Summary

This chapter recorded and explained the strategy taken to evaluate Rust on CHERI, which de�nes
the scope of this project. It documented techniques and processes which may be of use to future
implementers, as well as speci�c di�erences in the CHERI architecture that lead to implementation
con�icts with Rust. For example, Section 4.3.1 explains implementation details of the Rust compiler
arising from the de�nition of index sizes, as well as the choices made to resolve the issue for this project.

The strategy taken and compromises made set the stage for Chapter 5, where I evaluate the application
of CHERI capabilities to Rust, and Rust guarantees to CHERI. They inform the evaluation and de�ne
its limitations.

22

Chapter 5

Evaluation

5.1 Objectives

Chapter 4 de�ned the scope of this evaluation, and discussed the compromises that were made to
compile Rust’s core libraries for CHERI.

This chapter contains the main evaluation of CHERI capabilities in a safe language, Rust. An overview
of the focusses of each section:

Section 5.2 Previous vulnerabilities in the Rust standard libraries. It shows that bugs in Unsafe Rust
are not substantially di�erent from those in C, and includes microbenchmarks demonstrating
that CHERI capabilities provide an e�ective mitigation.

Section 5.3 The implications of the Rust language and toolchain for CHERI. How Rust’s guarantees
complement capabilities, and why Rust is an ideal candidate for porting to CHERI due to its
memory model and performance.

Sections 5.4 to 5.6 The implications of CHERI capabilities on the Rust language. How Rust’s guar-
antees can be enforced even in Unsafe Rust, and extended to cover cross-domain function calls,
without changing language semantics.

Section 5.7 The connection between Unsafe Rust and unde�ned behaviour, referring to underlying
assumptions in the language. How CHERI capabilities rule out forms of unde�ned behaviour
in Rust, by guaranteeing a hardware exception on violation.

Section 5.8 A method to minimise the memory overheads of capability protection by using the
hybrid ABI, which allows both capability and non-capability pointers in a single program. A
consideration of the conditions that allow this and the guarantees it provides.

Section 5.9 An argument for reinterpreting the previously-discussed usize de�nition, with respect
to its usage in the language. Reference is made to community consensus, existing de�nitions,
and types in other languages.

Section 5.10 General concerns and implications when introducing capabilities to safe languages;
when they bene�t the most and least.

Section 5.11 Chapter summary.

23

5.2 Errors leading to memory violations in Rust

Despite Rust’s attention to safe language design, programmer error is still a rich source of potential
vulnerabilities. While the Rust community is generally conscious about memory safety and security,
nowhere is this more true than with the language and compiler developers.

This section covers four entirely unrelated memory safety �aws discovered in the Rust standard library,
all preventable with CHERI capabilities. Where relevant, demonstrative microbenchmarks were per-
formed on either CheriBSD on Qemu-CHERI with 128-bit capability pointers, or FreeBSD 11.2 (amd64)
for the non-capability comparison. In all cases, the Rust compiler was as described in Chapters 3 and 4,
specifying the target as appropriate.

5.2.1 Pushing to a VecDeque: o�-by-one error leads to out-of-bounds write

Cause

Rust’s VecDeque is a circular data structure stored on a bu�er. When this bu�er is expanded, elements
stored at its (former) end must be moved to its new end. This error was caused by incorrectly using
the public capacity, accessed by self.capacity(), instead of the private (raw) capacity of the bu�er,
self.cap() (Figure 5.1) [18, 26].

1 impl <T> VecDeque <T> {
2 #[inline]
3 pub fn capacity (&self) -> usize {
4 self.cap() - 1
5 }
6
7 pub fn push_back (&mut self , value: T) {
8 self.grow_if_necessary ();
9

10 let head = self.head; // PRE: 0 <= head < len
11 self.head = self.wrap_add(self.head , 1);
12 unsafe { ptr::write(self.ptr ().add(head), value) } // unchecked
13 }
14 }

Figure 5.1: The public-facing de�nitions for a VecDeque’s capacity, and pushing to the end. It will not
escape the reader’s attention that the capacity() might be mistaken for the cap(), a likely cause of this
error. These de�nitions are current in Rust. push_back annotated with implicit precondition.

Subsequently, the pointer to the deque’s head would point to the address immediately after the bu�er,
rather than its start. Pushing to the back of the deque then attempts to write to the address after the
bu�er, rather than within it.

This appears to have been caused by the similarity of the method names leading to an o�-by-one error.

Demonstration microbenchmark

I checked that this spatial violation is caught by CHERI capabilities, but is not detected on x86 FreeBSD.
Sample code is shown in Figure 5.2.

Had another data structure been allocated after the deque, its start would have been overwritten by
the pushed element. However, I was unable to force this situation without modifying the allocator for
the purpose.

24

1 fn main() {
2 use alloc:: collections :: VecDeque;
3
4 let mut deque = VecDeque :: with_capacity (31);
5 deque.push_front (5);
6 for x in &deque { prntf!("%d␣", *x); } prntf!("\n"); // ‘5’
7 prntf!("%d,␣%d", deque.head as u64 , deque.tail as u64); // ‘0, 31’
8
9 deque.reserve (30); // head should not change

10 prntf!("%d,␣%d", deque.head as u64 , deque.tail as u64); // ‘32, 31’
11
12 deque.push_back (6); // CHERI: length violation!
13 for x in &deque { prntf!("%d␣", *x); } // ‘5 0’ <- not ‘5 6’!
14 prntf!("\n%d,␣%d", deque.head as u64 , deque.tail as u64); // ‘1, 31’
15 }

Figure 5.2: A program which writes beyond the end of an allocated VecDeque bu�er. An o�-by-one error
in reserve results in an unsound call another function, updating head to 32. Under x86 without capabilities,
the program terminates normally, printing output as shown in the comments.† With CHERI capabilities,
execution continues until line 12, which traps due to a length violation.
† The prntf! macro is not built-in; I de�ne it for convenience. Using the same syntax as the C printf function, it
avoids considerable unsafe boilerplate while enhancing readability.

Observations

This scenario is a plain example of a bounds violation that is prevented by capabilities. Had the under-
lying implementation not used an unchecked write (line 12 of Figure 5.1), this would also have been
prevented by Rust’s bounds checks, as the VecDeque is backed by a vector. This is an interesting lesson:
bounds checks are useful not only for the end-programmer, but also (presumably meticulous) language
developers.

Note that whether this exceeds the bounds is implementation speci�c! The existing implementation
will reserve space for 32 elements here, but if more space had been reserved by with_capacity or its
underlying code (e.g. 64 elements), the object bounds would have been correspondingly wider. In that
case, it would only be detected if the value was written using the built-in bounds-checking indexing,
although the pushed value would still disappear.

5.2.2 Slice repeat: integer over�ow leads to bu�er over�ow

Cause

This �aw arose from an unchecked write, one pattern of optimisation using Unsafe Rust covered in
Section 3.4. It occurs in the repeat function on slices (Figure 5.3), which returns a vector containing a
slice repeated as speci�ed by the parameter. Here, a bu�er over�ow occurs when the length of returned
vector would over�ow the target’s usize.

This appears to be a simple integer over�ow translating to a bu�er over�ow. Note that this over�ow
will be caught when compiling Rust code in debug mode, as integer over�ow checks will apply to all
arithmetic; release mode instead uses two’s complement and is not unde�ned.

25

1 impl <T> [T] {
2 pub fn repeat (&self , n: usize) -> Vec <T> where T: Copy {
3 if n == 0 { return Vec::new(); }
4
5 let mut buf = Vec:: with_capacity(self.len() * n);
6 buf.extend(self);
7 {
8 let mut m = n >> 1;
9 while m > 0 {

10 unsafe {
11 ptr:: copy_nonoverlapping(
12 buf.as_ptr(),
13 (buf.as_mut_ptr () as *mut T).add(buf.len()),
14 buf.len(),
15);
16 let buf_len = buf.len();
17 buf.set_len(buf_len * 2);
18 }
19 m >>= 1;
20 }
21 }
22 // omitted: copy into the remainder of the vector
23 }
24 }

Figure 5.3: Rust’s slice repeat, from alloc::slice. Parts omitted for brevity. This code attempts to write
beyond the end of a bu�er. The error is in line 5; it was �xed by checking the multiplication against integer
over�ow.

Demonstration microbenchmark

I did not demonstrate this by calling the repeat method as given: as noted below, attempting to copy
more than 264 elements is di�cult to do in a controlled way. Instead, Figure 5.4 shows the code used to
demonstrate the e�ects of this bug.

I chose values carefully to demonstrate the over�ow on the test machine; other values may work
depending on the operating system and allocator.

Observations

This is di�cult to exploit, as it would require a long slice or a large number = of repetitions, increasing
the chance of a segmentation fault. An exploit would probably have to interrupt the write before too
many iterations of the loop, and either spawn a new process or stop the thread executing this loop
before the operating system stopped it.

5.2.3 Out-of-bounds indexing into a reversed slice

Cause

An unhandled unsigned integer wrap-around could lead to out-of-bounds slice indexing through its
reverse iterator [22]. Figure 5.5 shows the relevant implementation, de�ned in the core library.

In this situation, the assumptions about the underlying iterator implementation are not obvious, and
thus not considered when writing this method.

26

1 fn main() {
2 use core::ptr:: copy_nonoverlapping;
3
4 let s: [i64; 3] = [1, 2 ,3];
5 let reps = 6148914691236517207; // (2 ** 64 + 5) / 3
6
7 // Simulate usize == u64 on CHERI , where usize == u128
8 let mut buf = Vec:: with_capacity ((s.len() * reps) as u64 as usize);
9 prntf!("capacity:␣%d\n", buf.capacity () as u64); // 5

10 buf.extend (&s);
11
12 let mut v: Vec <i64 > = Vec::new();
13 v.extend (&s); // Manipulate allocation to
14 v[0] = -1; // ensure the buffers are
15 v.push (-4); // allocated nearby
16 for x in &v { prntf!("%d␣", *x); } prntf!("\n"); // -1 2 3 -4
17
18 {
19 let mut m = 8; // 8 <= n >> 1; copy enough times to reach ‘v’
20 while m > 0 {
21 unsafe {
22 copy_nonoverlapping(// generates memcpy
23 buf.as_ptr(), // out of bounds on 1st iter
24 (buf.as_mut_ptr () as *mut i64).add(buf.len()),
25 buf.len()
26); // CHERI: length violation
27 let buf_len = buf.len();
28 buf.set_len(buf_len * 2);
29 }
30 m >>= 1;
31 }
32 }
33 for x in &v { prntf!("%d␣", *x); } prntf!("\n"); // 1 2 3 1
34 }

Figure 5.4: Demonstration of how an integer over�ow can lead to a bu�er over�ow when repeating a slice.
Three iterations of the copy are performed (lines 20–31) to ensure v is overwritten on the non-capability
machine; with capabilities this traps on the �rst iteration.

1 impl <I> RandomAccessIterator for Rev <I>
2 where
3 I: DoubleEndedIterator + RandomAcc ,
4 {
5 #[inline]
6 fn idx(&mut self , index: usize) -> Option <<I as Iterator >::Item > {
7 let amt = self.indexable ();
8 self.iter.idx(amt - index - 1)
9 }

10 }

Figure 5.5: Previous implementation of indexing into a reversed slice. If amt - index - 1 < 0, the index
wraps, attempting to access an index larger than the indexable region. This may be unsafe depending on
the underlying implementation. This was �xed by checking that amt > index before indexing, returning
None otherwise [21].

27

Observations

A very large index (i.e. close to usize::MAX) could be passed to the reverse indexing function to get
values slightly beyond the end of the slice. As ‘slice’ suggests, they frequently represent a view into a
larger slice, so this could reasonably be expected to be de�ned.

Whether this is possible is implementation-dependent; if the reverse idx is expected to handle bad
values, then the underlying idx should arguably also handle them. If anything, this example and its
resolution is an example of the safety awareness of Rust developers, rather than a fundamental bug.

5.2.4 Iterator method violates Rust’s uniqueness of shared references

Cause

An iterator method in the core library should return a mutable slice from a mutable iterator. Instead, it
returns a mutable slice for any iterator. Figure 5.6 shows that it does this by calling an unsafe method
which operates on raw pointers [8].

1 impl <T> IntoIter <T> {
2 pub fn as_mut_slice (&self) -> &mut [T] {
3 unsafe {
4 slice:: from_raw_parts_mut(self.ptr as *mut T, self.len())
5 }
6 }
7 }

Figure 5.6: Built-in method returning a mutable slice for a (mutable) iterator: except it accepts immutable
iterators also. This violates Rust’s temporal guarantee that mutable references are never shared.

This bug appears to be caused by copying and pasting the Iterator as_slice method when writing
as_mut_slice. A demonstration of the fallibility of programmers and motivator for safe syntax, neither
the language nor the runtime helps in this situation.

Observations

This is a clear violation of one of Rust’s temporal safety guarantees, that mutable references must not
ordinarily be shared. While this is not strictly unde�ned behaviour, attempting to mutate the returned
object is, defeating the point of getting a mutable slice.

Though this error leads to temporal unsafety, this could be prevented by passing a read-only capability
for an immutable borrow. Section 5.5.1 discusses this in more detail.

5.3 Implications of Rust semantics for CHERI targets

Capabilities are typically seen as a mechanism to improve the security of languages and runtimes.
It is therefore slightly unusual to consider how a language might improve capabilities. Nevertheless,
this section considers how Rust complements CHERI capabilities, presenting a contrast to other safe
languages.

5.3.1 Ownership gives complementary temporal safety

One of Rust’s main objectives and early selling points was fearless concurrency. It uses its ownership
model and type system to manage temporal memory safety [44]. These mechanisms prevent dangling

28

pointers or use-after-free in Safe Rust (Section 3.2), although the use of raw pointers in Unsafe Rust
can bypass these checks.

By contrast, CHERI’s initial focus was on spatial integrity, only later moving to consider temporal
safety by means of tagging. Temporal safety is provided by marking capabilities as local or global,
which restricts the �ow of capabilities and thereby preventing their leakage [59].

However, this provision only yields atomic pointer updates and identi�ability of pointers; it is not
precise enough to guarantee safety across thread or process boundaries, such as foreign function
interface (FFI) and system calls [14]. While Rust does not provide temporal protection against other
processes misusing its resources, its ownership model guarantees that a thread which has yielded
a resource does not attempt to modify it while it has been lent out. Likewise, the ownership model
prevents similar con�icts within a concurrent Rust program, complementing CHERI’s spatial integrity.

Note: Section 5.6 discusses how CHERI capabilities can be used to make Rust’s FFI or cross-process
calls safer.

Temporal safety under CHERI

While not inherent to capability systems, CHERI enables a form of revocation, preventing dangling
pointers from being dereferenced. See Section 5.4.4 for an example of how revocation can be useful in
Rust.

5.3.2 Stronger pointer provenance model in Rust

With a fully-functional Rust compiler for CHERI, porting Rust programs and crates should be straight-
forward. In particular, common compatibility issues in CHERI due to pointer provenance [14] do not
apply in Safe Rust, as the compiler tracks object ownership comprehensively.1

Due to Rust’s lack of a speci�cation and documented unde�ned behaviour, programmers are discour-
aged from performing such capability-incompatible pointer manipulation. It is unclear if problematic
pointer manipulation is currently unde�ned in Rust, but community discussions suggest that it might
be in future [27]. As such, unsafe code should not rely on patterns that break provenance analysis in
these ways.2

5.3.3 Safer code patterns yields easier porting to CHERI

Rust has been designed to guide programmers toward writing safe code, and to highlight potentially
dangerous operations. Programmers have less cause to perform unusual or clever pointer manipula-
tion, writing code that does not immediately compile for CHERI. Section 4.4 documented the limited
incompatibilities in the core library; most changes a�ect the compiler.

Nevertheless, one should recognise that the di�culty of porting C programs to capability architectures
and CHERI in particular is not thought to be too onerous [56]. This must be weighed against the
prospect of updating the Rust compiler.

5.3.4 Comparable performance to C

While Rust possesses strong safety features, it also provides good performance. For this reason, it has
garnered attention in applications as diverse as astrophysics (favourable comparison to Fortran [9]),
GPU programming (comparable to handwritten and domain-speci�c language generated OpenCL [20]),

1An exception is ‘pointer shape’; see Section 4.3.1.
2For example, the XOR linked list might not be implementable in Rust without exhibiting unde�ned behaviour.

29

and garbage collection (comparable to C [33]). The Debian project maintains a set of toy benchmarks
run against user-submitted programs in diverse languages [19], showing that Rust performs as well as
C and C++ under their testing problems and environment. All three come well ahead of the next ‘safe’
languages, Java and Go.

These suggest that Rust is capable of matching C under some circumstances while being safer, making it
a good choice in general. If CHERI implementers are keen on augmenting hardware safety features with
a speedy, low-runtime language, then Rust makes a sensible choice, especially for embedded platforms.

5.3.5 Larger pointer size can be o�set by removing redundant bounds information

Currently, any memory slice stores a pointer to the relevant object and its length [10]. As bounds
information can be derived from a CHERI capability pointer, it is redundant to store the length. Instead,
a CGetLen instruction could retrieve the bounds information when needed. The overhead of a 128-bit
pointer can therefore be o�set by the removal of a 64-bit length variable, negating the memory overhead
for slices which would apply in other languages.

Impact on data structures

Associating bounds information with pointers is a natural pattern for slices, which have one �xed bound.
However, vectors have di�erent bounds for the allocated space and the initialised indices. Currently,
these are known as the capacity and length of the vector respectively. This tension can be resolved in
two ways, both requiring capability pointers to the allocation3:

Initialised length variable This is similar to the current implementation, where the capacity vari-
able can be dropped. This saves space, as a length variable would be a usize (64 bits), where
a capability would be 128 bits. However, bounds checks will be required for indexing into
vectors, hence could not be completely removed from Rust compilation (to CHERI).

Slice capability pointer A natural solution: this squares with Rust’s type system, where indexing
is provided by the SliceIndex trait implemented for slices. However this requires more space,
and it is unclear if deriving a new slice capability for each push/pop operation on the vector
will be faster or slower than updating a length variable. This should not a�ect concurrency
when popping as CHERI capabilities support atomic operations: pushing would require the
slice capability to be derived from the allocation capability, which could pose a problem.

Memory overhead of CHERI capabilities

The memory tra�c overheads of CHERI capabilities for diverse C benchmark programs is within 5–
10% [23], with the greatest impact on pointer-heavy workloads. In Rust, some overhead will still apply:
capability pointers are always larger, and bounds checks are only occasionally saved. The impact on
cache usage is unclear, but it is not unreasonable to suggest that overheads will be at most as large as
under equivalent C workloads. Section 5.8 outlines a strategy to reduce the memory impact of CHERI
capabilities in Rust.

5.4 Spatial integrity in Rust from CHERI capabilities

This section explores how memory safety can be improved in the Rust compiler and runtime by in-
troducing CHERI capabilities. Section 5.7 instead considers how capabilities can be used to reduce the
danger posed by unde�ned behaviour, enabling changes to the semantics of the language.

3Monotonicity implies that the full allocated space must be continuously pointed to; otherwise it is leaked.

30

5.4.1 Mitigation of traditional vulnerabilities

One class of attacks that Rust aims to mitigate is bu�er over�ows. In Safe Rust, bounds checks are
inserted (Section 2.3.1) to prevent out-of-bounds accesses and writes.

Nevertheless, as Section 3.4 highlights, unchecked accesses are sometimes used for optimisation, by
reading or writing using raw pointers. These unsafe operations are just as susceptible to programmer
errors as their C analogues, giving rise to the bugs discussed in Sections 5.2.1 and 5.2.2. Capabilities
can combat this by preventing out-of-bounds accesses.

5.4.2 Bounds checks removal

With capabilities, bounds checks can be removed altogether: instead of the default panic, a hardware
interrupt will occur with each attempted out-of-bounds access. Most Rust programs do not handle
panics, instead crashing the program: this is the default behaviour. If desired, CHERI length violations
can be caught and the panic handler invoked, rather than terminating the program directly. Therefore
the CHERI mechanism is fully compatible with the existing panicking framework.

This is a low-impact improvement, as most bounds checks are elided with compiler optimisations en-
abled; see Section 3.5 for examples where checks are already optimised. However, they are unavoidable
in some situations, such as random array accesses.

5.4.3 Sub-object bound enforcement

In Rust, slices can be created from continuous segments of an iterable. Slices can be passed to functions,
only allowing them to refer to part of an array, or a subslice. Using pointer manipulation, such a function
could access indices of the array which are not part of the slice. This is not unde�ned behaviour as the
pointer would point to a valid part of the object, although it must be done in Unsafe Rust.

With CHERI capabilities, a subslice could be passed as a pointer with bounds restricted to the relevant
segment of the array. It would then be impossible for a function to access the other elements unexpec-
tedly, again enforcing the principle of least privilege. Additionally, this can enforce Rust’s temporal
protection when splitting slices with the split_at_mut method.

Likewise, this can apply to struct members, generalising the protection to objects with known continu-
ous layouts. The cost of doing this is similar to that of enforcing immutability in Section 5.5.1.

5.4.4 Use-after-free elimination in Safe Rust

As we have discovered, spatial integrity is not an absolute guarantee in Rust. Unsurprisingly, neither is
temporal safety, even in Safe Rust!

Consider the following example from the documentation, a simpli�ed version of the reference-counted
container type, Rc, and its simpli�ed Drop implementation (Figure 5.7). By over�owing the reference
count (using mem::forget if memory usage is an issue), one can cause the pointed-to object to be
deallocated, even with outstanding references, defeating the reference counter. This creates a use-after-
free bug [41].

This can be resolved by revocation, for which CHERI capabilities provide a foundation by virtue of
monotonicity and memory tagging. Revocation prevents programs from reading or modifying memory
which has been deallocated, or more importantly reallocated, another common source of vulnerabilit-
ies. Note that there are performance overheads associated with revocation [58], and Rust’s temporal
guarantees mean that its utility is largely constrained to unsafe code. This is discussed further in
Section 5.7.3.

31

1 impl <T> Drop for Rc <T> {
2 fn drop(&mut self) {
3 unsafe {
4 (*self.ptr). ref_count -= 1;
5 if (*self.ptr). ref_count == 0 {
6 // drop the data and then free it
7 ptr::read(self.ptr);
8 heap:: deallocate(self.ptr);
9 }

10 }
11 }
12 }

Figure 5.7: A potential use-after-free bug, if ref_count over�ows. This may occur in Safe Rust, as drop
methods are always safe: the unsafety is encapsulated here, and also in mem::forget, which would be used
to over�ow the count. Example from the Rust documentation [41].

5.5 Capability sealing to protect Rust objects

Capability sealing can prevent a capability from being used to mutate or dereference the memory
it refers to, as described in Section 2.2.3. This section describes how the Rust runtime can use this
mechanism to enforce program invariants.

5.5.1 Preserving object immutability in Unsafe Rust

Modifying an immutable object is unde�ned behaviour in Rust, and should be prevented by the compiler
in Safe Rust. The only exception to this pattern is the UnsafeCell, modi�cations to which are explicitly
excluded from being unde�ned behaviour. There, the programmer is expected to implement an object
safely without causing concurrency bugs.

However, the compiler does not prevent this invariant from being violated in Unsafe Rust, where the
programmer can essentially bypass the type system by casting raw pointers. There have been bugs in
the standard library [8] (Section 5.2.4) resulting in mutable references to supposedly immutable objects.

Since mutating these is unde�ned, it is reasonable to protect them from being written to, which can
be accomplished with capabilities. This enforces the principle of least privilege on shared references.
Sealing can be used to prevent mutation.

Note on di�erences from C

Enforcing C’s const in hardware proved problematic for CHERI in the past, due to functions like strchr
(C), which derive a non-const (mutable) pointer from an immutable one [57].

char *strchr(const char *s, int c);

The proposal of deriving a read-only capability for each immutable reference in Rust does not su�er
this problem, as it is not possible to derive a mutable reference from an immutable one. Indeed, this
idiom does not occur in Rust as immutability is conveyed by the function signature.

5.5.2 Preserving object immutability across FFI boundaries

No amount of type-checking can prevent a foreign function from modifying a supposedly immutable
borrowed object, since they use raw pointers and are not bound to Rust’s semantics.

32

By passing a capability without write permissions to a function, this particular cause of unde�ned
behaviour can be eliminated. This supports the use of least privilege even across foreign function
interfaces.

5.5.3 Protecting data from callback functions

Another situation that bene�ts from least privilege are callbacks from FFI code. In this scenario, an FFI
function might receive a pointer to data it is expected not to access, but instead merely to return the
pointer to the original process at the correct time.

This can be enforced through capability sealing. The foreign function would be unable to dereference
the object, but the capability could be unsealed by the original program to regain access to the original
data [58]. This allows less trusted code to handle Rust objects while still guaranteeing integrity and
con�dentiality.

5.5.4 Fine-grained object protection

As an extension of the previous sections, not only can speci�c objects passed across unsafe or FFI
boundaries be protected, but also objects transitively accessed via those objects. CHERI capabilities
include an object type �eld, on which sealing and unsealing can be predicated; this can be used to
protect a ‘con�dential object’ type (and derivable types) from abuse by Unsafe Rust or FFI functions.
This can easily be marked using a Rust trait.

To motivate this protection, consider a library written in Safe Rust. Its authors may wish to restrict
the ability of other code to abuse Unsafe Rust to read its data, for instance to protect customer records.
Capability sealing presents a viable method to enforce this.

Note that accessing an object which one has a reference to is not unde�ned. Sealing to prevent pointer
dereferences can therefore be used to enforce invariants which other code may not conform to. For
instance, a high-performance data structure might attempt a deep copy of its objects, which would be
obstructed by sealing in the scenario above.

5.5.5 E�cacy and costs of sealing

However, manipulating capabilities is not free and the overheads of manipulating capabilities should
be weighed against enforcement within the existing type system, which is statically enforced but does
not protect against unsafe code. Additionally, this does not solve the inherent potential for programmer
error in the compiler, such as incorrectly failing to seal a capability.

5.6 Improved safety of FFI calls

A quick survey of Rust crates that use FFI bindings shows that most of them deal with some form of
low-level behaviour, including encryption, memory allocation, USB interfaces, and �lesystem mounts.4
With performance or low-level access as the primary goal of most Rust FFI calls, safety may not be a
major concern, even if it could allow arbitrary code execution in the Rust program [53].

Most of the discussion below has to do with object capabilities and is thus inherent in the use of CHERI
capabilities, but system call protection is a separate feature of CHERI compartmentalisation. Watson et
al. describe the mechanism and security implications with regard to C [59]. Many of the points apply

4Rust crates are published libraries. A survey of the “Rust package registry” may be of interest: https://crates.io/search?q=-
sys; a -sys su�x conventionally denotes an FFI crate.

33

https://crates.io/search?q=-sys
https://crates.io/search?q=-sys

to non-FFI code as well, although protection across domain boundaries is perhaps more signi�cant as
FFI calls cannot be type- or borrow-checked.

5.6.1 Prevention of use-after-free from FFI

The use of FFI functions can bypass Rust’s object lifetime model, as there is no way to ensure that an FFI
function has not stored or leaked references to borrowed Rust objects. This can lead to later temporal
unsoundness in the Rust program.

While this cannot be completely prevented with capabilities as-is, Section 5.7.3 discusses the possibility
of using revocations to manage this risk.

5.6.2 Enforcement of object boundaries

Objects can only be passed to C as raw pointers. As such, a bu�er over�ow through an FFI function is
no more di�cult than in C natively, and no less serious.

A simple example of an over�ow is a C string with a missing NUL terminating byte. To overcome this,
Rust strings instead store a length value and a byte array, making them non-interchangeable with C
strings. However, if a programmer neglects to convert between the formats, passing a Rust string to a
C function will quickly lead to an over�ow.

Object capabilities easily protect against this by storing and enforcing object bounds. Importantly, they
protect the rest of the calling program’s address space, preventing a cross-domain call from accessing
data which was not explicitly passed to it.

5.6.3 Protection of system calls

In addition to protecting the caller’s memory, CHERI can be extended to protect access to system calls
in FFI functions. This is achieved by funnelling system calls through classes which only permit safe
calls [59]. A caller can thereby restrict the privileges of a callee function, preventing bugs in called
libraries from propagating to the host program.

5.7 Strengthening unsafety

This section considers the danger posed by unde�ned behaviour in Rust, and how it can be mitigated
by CHERI capabilities, enhancing the semantics and guarantees of the language while not impeding
compiler transformations and optimisation.

I address four of the nine forms of unde�ned behaviour documented by the Rust project, and show
how they are made safer with capabilities.

5.7.1 Rationale for Unsafe Rust

In Safe Rust, the compiler accepts programs which avoid memory safety problems using its type-
and borrow-checkers. Unsafe Rust enables programs which would not otherwise pass this static ana-
lysis [44].

Programmers bypass these checks by using raw pointers, unsafe traits, or using mutable static variables,
all of which could violate temporal memory safety. Reaching unde�ned behaviour is possible with
unsafe code, where it is not supposed to be possible in Safe Rust.

34

5.7.2 From unsafe code to unde�ned behaviour

A requirement of the Rust language is that safe code should never be able to exhibit unde�ned behaviour:
unsafe code must be handled thoroughly such that safe functions are de�ned on all inputs. Thus Unsafe
Rust and unde�ned behaviour are inextricably linked.

Unde�ned behaviour in Rust is fairly simple to comprehend: the core list contains only 9 points [45],5
none of which are challenging to avoid, unlike signed integer over�ow in C. The following sections
show how the CHERI architecture can be used to restrict unde�ned behaviour, and thereby make
Unsafe Rust safer.

5.7.3 Restricting unde�ned behaviour with CHERI capabilities

The unde�ned behaviour below takes the form of invariants assumed by the Rust compiler or LLVM;
they all involve the usage of pointers or references. Transformations based on these assumptions are
made safer, by guaranteeing a trap if the invariant is violated.

LLVM pointer aliasing rules

Breaking LLVM’s pointer aliasing rules is forbidden. In essence, the rules state that a pointer may not
be used to access memory apart from those addresses it is based on.

CHERI capabilities rule this out, due to monotonicity. In fact, they impose stronger conditions, as a
capability formed by an inttoptr cannot be dereferenced.

Mutation of non-mutable data

CHERI capabilities can prevent the mutation of data reached through a shared reference by enforcing
object immutability as detailed in Section 5.5.1. In this case, the references are known to be immutable
in Rust semantics, so this is easy to compile and enforce.

Enforcement of the noaliasmodel

Likewise, CHERI capabilities can rule out violations of LLVM’s noalias model in Rust by similar
means. To check this, �rst note that the model will not be violated in Safe Rust, as the compiler enforces
uniqueness of mutable references. It is thus only necessary to prevent the mutation of an object through
a reference if other references to that object are being used.

This can be done by deriving a read-only capability for immutable references. As the compiler enforces
the uniqueness of mutable references, the two measures combined prevent violations of this model in
unsafe code.

Caveat A mutable reference can �rst be converted to a raw pointer, and subsequently duplicated in
unsafe code. This would prevent the Rust compiler from enforcing the uniqueness of mutable references
or generating non-writeable capabilities, abandoning Rust’s temporal safety guarantees.

Dereferencing null or dangling pointers

This invariant is traditionally used to show that a pointer is not null or dangling, if it has been previously
dereferenced. That is to say a pointer which has already been dereferenced is safe to dereference again,

5The list is non-exhaustive. Note: Rust has no formal semantics or speci�cation, making the idea of particular unde�ned
behaviours rather arbitrary.

35

which ties in with the aliasing rules discussed above. It is then considered safe to optimise away null
checks [55, 32], possibly causing an invalid dereference.

While capabilities cannot prevent an attempt to dereference a pointer, they can prevent dereferences
from succeeding. For instance, a null pointer or an arbitrarily-constructed pointer from inttoptr will
fail to dereference on CHERI, as it would not possess a valid capability. This removes much of the
danger from dereferencing a null or dangling pointer, by guaranteeing that it will trap rather than
compromising the integrity or con�dentiality of memory.

Dangling pointers By themselves, capabilities do not o�er protection against dereferencing a dangling
pointer, as they derive from a previously-valid object. However, revocation allows dangling pointers to
be identi�ed and marked, preventing them from being used.

5.8 Hybrid ABI: Minimising the memory footprint of CHERI capab-
ilities

5.8.1 Safe Rust is memory safe

Observe that the bugs covered in Section 5.2 occur in Unsafe Rust: either from the exposure of unsafe
methods as safe, thereby failing to handle all the cases, or through errors in the unsafe code itself. This
is no coincidence: Safe Rust is not expressive enough to generate memory safety errors, as it lacks the
memory manipulation primitives to do so. This is evinced by the additional actions programmers may
take in Unsafe Rust [42].

Being satis�ed that Safe Rust is indeed memory safe, references that are only manipulated in Safe Rust
need not be protected by capabilities, reducing the overall memory overhead.

5.8.2 Pointer provenance for Unsafe Rust

Due to Rust’s strong provenance model, all references can be traced to their original object, and so can
raw pointers generated from that object. Thus all references used in Unsafe Rust can be tracked to their
instantiation at compile time, and marked to indicate that a capability pointer should be used. Unsafe
Rust code would therefore only encounter capability pointers.

Likewise, this analysis can determine all objects reached from unsafe code: similar analysis is already
performed to prevent modifying immutable objects in Unsafe Rust.6

Note that raw pointers can be manipulated to point to a di�erent object, even if this is unde�ned
behaviour in Rust. However, if each raw pointer is a capability pointer, such code will still be unable to
violate memory safety.

5.8.3 Reduction in memory overhead of capabilities

Such a scheme would use non-capability pointers in the default LLVM address space for memory only
accessed by Safe Rust code. This results in reduction in the memory overhead of capabilities, due to
the use of ordinary pointers; the overhead being constrained to objects that are manipulated in unsafe
code. This is possible using the hybrid ABI, rather than the pure capability ABI implemented in this
project.

6For completeness, unsafe code can modify immutable objects by casting to (Rust) raw pointers. The provenance of these
raw pointers is still tracked by the compiler; see Stacked Borrows for an e�ort using provenance to enforce semantics on
Unsafe Rust [25].

36

Note that Rust is considered to be similarly performant to C (Section 5.3.4). However, C lacks a separation
of ‘safe’ and ‘unsafe’ code, and hence lacks a practical mechanism to distinguish low-risk code, making
this optimisation impossible. It is possible to focus on dangerous libraries, traditionally those providing
high-performance data parsing, and only use capabilities there. Nevertheless, this ignores the fact
that serious vulnerabilities in C code have been unexpectedly found in otherwise safe-looking code,
sometimes due to the subtleties of the C standard [35]. Consequently, capability protection could be
optimised for a lower footprint on Rust code than C, potentially making it the ideal language for a
CHERI platform.

5.8.4 Limitations

Optimisation opportunity could be limited, however. Many routines in the core library use unsafe code
to manipulate objects, such as the built-in sorting algorithms. It is unclear how many routines do this
to avoid bounds-checked accesses, as is the sole reason in sorting: recall that runtime bounds checking
is redundant in CHERI, but only with the use of capabilities.

A study of the proportion of Rust references not used in unsafe code is therefore advisable. Note that
not all references passed to Unsafe Rust need to be marked: only usage for raw pointer operations and
FFI calls are relevant in this case, along with speci�c compiler primitives.

5.9 Distinguishing pointer width and index sizes

Sections 3.3 and 4.3.1 discussed the implications of Rust’s implementation of index size or usize in the
compiler. Here I consider how its de�nition could be changed or reinterpreted to make it compatible
with CHERI.

5.9.1 De�nition of usize

The usize type is classi�ed as a ‘machine-dependent integer type’. It is an unsigned integer type with
the same number of bits as the platform’s pointer type, which can represent every memory address in the
process [45]. Elsewhere, the Rust documentation states that it is the pointer-sized integer type, and that
the size of this primitive is how many bytes it takes to reference any location in memory, stating that it is
8 bytes on a 64-bit target [46].

Likewise, the isize is de�ned as its signed counterpart. The Rust reference notes that the theoretical
upper bound on object and array size is the maximum isize value, even though the usize type is used
for indexing into slices.

5.9.2 Representing every memory address

There is no pair of morphisms that translate between integers (including the usize) and CHERI capab-
ilities. This is due to monotonicity, where integers cannot be transformed into pointers, and enforced
by the memory tagging mechanism. Thus no memory address can be recovered solely from an integer.

Notwithstanding the di�erence between represent and reference, and the existence of arbitrary pointer
values, it seems clear that there should be some sort of correspondence between pointers and usize
values. Speci�cally, the text suggests that this correspondence is between memory addresses or locations,
rather than any data associated with a pointer.

37

Usage in the compiler and core library

This correspondence is echoed in compiler usage and the core library. Usages of usize are not concerned
with tag information that may be associated with a pointer; they refer to sizes, ranges, and distances.

For instance, the 8 tag bits provided on the AArch64 architecture are of no interest when using a usize.

5.9.3 Rust context

This is a complex issue in Rust. Rust RFC #544 [63] is ostensibly a naming issue for this pointer-sized
integer type, but it provides an excellent background to the semantics and usage of this type in Rust.
Indeed, its complexity is such that the community understands usize to be “the size of a pointer by
de�nition.”, or “de�ned. . . [to be] the same size as *const ()”, i.e. a raw pointer. A more cautious opinion
gave that “traditionally, usize == uintptr_t”.7

Despite these statements, I claim that the text of the de�nitions and the usage show that the usize
need only be large enough to reference memory addresses. Thus 48 bits su�ce on CHERI, though 64
might be a more practical value.

This is something of a controversial issue in Rust, and even a seemingly minor clari�cation may take
considerable time to make it into the documentation. From a semantic standpoint, however, to use a
128-bit usize on CHERI128 would be not only inconvenient, but incorrect.

5.9.4 Integer types in C

C has several related machine-dependent integer types:

size_t Integer type appropriate to represent the size of any object, including indexing into at array.
This is the most frequent use of usize in Rust.

ptrdiff_t Integer type large enough to store the di�erence between two addresses. In Rust, there
is no motive to compare pointers from di�erent allocations, so a size_t equivalent su�ces.

intptr_t Optional signed integer type large enough to hold a pointer. The commonly-understood
de�nition of isize in Rust.

uintptr_t Optional unsigned integer type large enough to hold a pointer. The commonly-understood
de�nition of usize in Rust.

What is important to see is that the speci�c integer value of a pointer is of no intrinsic interest, and
only matters in comparison to other pointers. Further, it is meaningless to compare pointers to di�erent
objects. The Rust core library’s principal use of the LLVM inttoptr primitive is to determine the size
of an allocation, which is consistent with the above statements.

Most importantly, the key argument for only having one integer type that corresponds to C’s four was
that Rust semantics are di�erent, and the require di�erent reasoning and types. This is precisely true:
there is no functional use for non-address part of a CHERI capability pointer, and the addressable range
should not be con�ated with the pointer size.

7Responses in clari�cation of the de�nition of usize, from the Rust compiler forum on Zulip. The query included the
CHERI example, where 64 bits of a 128-bit pointer are used for addressing.

38

5.10 Porting safe languages to capability architectures

This chapter has analysed how di�erent mechanisms and protections of the memory-safe Rust lan-
guage interact with CHERI capabilities. This section generalises many of its observations to other safe
languages, giving a preview of the relevant concerns when bringing other languages and runtimes to
hardware capability platforms.

5.10.1 Weaknesses in language runtimes

Many safe languages employ type systems to prevent unauthorised reading or writing of data, but
their runtimes can be a source of vulnerabilities. For example, a 2017 bug in CPython8 contained a bug
potentially giving arbitrary code execution from a heap over�ow [11].

Section 5.2.2 showed a similar exploit prevented by CHERI capabilities, and in the Python example,
the heap allocation would not successfully over�ow with capabilities. Note that CPython is written
in a combination of C and Python, and this routine in particular is written in C. This shows how safe
languages su�er vulnerabilities through their runtimes.

5.10.2 Unsafe code

Continuing from the previous section, like Rust’s unsafe, most ‘safe’ languages provide escape hatches:
an example is Haskell’s performUnsafeIO. Failing to do so limits the range of behaviour that programs
in that language can exhibit e�ciently. Similar mechanisms are used to call code written in other
languages, such as via the Java Native Interface (JNI).

Chisnall et al. have considered the application of CHERI capabilities to JNI calls [12], and Watson et
al. demonstrate compartmentalisation alongside CHERI capabilities [59]. In both cases, protections are
applied to what is generally the only signi�cant attack surface of a program, making it an e�cient
design choice.

Likewise, capability-aware languages could employ capability sealing to guarantee that data is not
inspected or modi�ed when passing references through system or cross-process calls, enforcing the
principle of least privilege.

5.10.3 Language semantics and implementation

Each language has a di�erent memory model, which may not be fully consistent with CHERI, which may
prevent certain idioms from translating properly. C has a notoriously weak memory model, permitting
pointer operations which destroy provenance under CHERI, making them non-dereferenceable: in
particular, such patterns are used in real-world programs [35].

Nevertheless, when Davis et al. examine the issue for FreeBSD and PostgreSQL, pointer provenance is
not as signi�cant an issue as one might expect [14]. It is probable that any pointer provenance issues to
do with safe languages come from, as in Rust, the compiler and runtime rather than general programs
written in that language.

5.10.4 Non-optimisation: type systems

Languages may use type systems to make signi�cant guarantees about programs: this is especially true
in functional languages. Outside of these, Java and Rust have sophisticated type systems; the use of
capabilities cannot optimise checks that are made at compile time.

8The Python runtime.

39

A contrasting example is Python, which performs type-checking at runtime: this cannot be optimised
by capabilities either, as more information is derived from types in general. Ultimately, it may be the
case that capabilities are uniquely useful for weakly-typed languages such as C.

5.11 Summary

This chapter began by demonstrating how e�ectively CHERI capabilities mitigate Rust vulnerabilities.
As further evidence of this point, another vulnerability in the Rust standard library was announced
while writing this report [40]: it permitted arbitrary typecasting and hence bu�er over�ows. Again this
is prevented by CHERI capabilities.

It detailed how Rust and CHERI memory protection mechanisms interact, and choices that would
maximise the bene�t while minimising the cost. This was done in light of Rust’s semantics and de�nition
of unde�ned behaviour, identifying the weakest points in the language and showing how they can
be protected with capabilities. Consideration was also given to implementation issues in the compiler,
resulting from under-de�ned semantics, and a strategy to tackle this presented. Finally, it generalised
the impact of Rust capabilities to other languages and runtimes, showing the areas which would bene�t
the most and least from capability protection.

40

Chapter 6

Conclusion

6.1 Context and review

This project examined memory protection mechanisms at the intersection of hardware and computer
architecture, compilers, and programming language semantics. The varied approaches and measures
shed light on the subtleties of two orthogonal problems: spatial and temporal integrity. These insights
illustrate di�erent ways of enforcing the principles of least privilege and intentional use, and the com-
promises and di�culties that arise from their interaction.

Whereas the bene�ts of hardware capabilities are well-studied for C, this work provides an under-
standing of their bene�ts in the context of a safe language, Rust. Each safe language provides di�erent
guarantees and enforces them di�erently; Rust de�nes semantics and performs most of its enforcement
through static checking, rejecting programs with unclear invariants. The strict constraints that this
places on programs motivates Unsafe Rust, which provides programmers more control over execution.
In the standard library, unsafe code is even used to optimise string processing, a traditional source of
C bu�er over�ows. Sections 3.4 and 3.5 covered situations in which Unsafe Rust is used.

It is in unsafe code that capabilities demonstrate their value, providing dynamic checks where static
checking is not possible. Section 5.2 examined how Rust’s protections yield to programmer error, giving
analyses of previous vulnerabilities in the Rust standard library. Further, it showed that capabilities
successfully prevent these vulnerabilities from exploitation. Indeed, in the course of writing this re-
port, another vulnerability in the Rust standard library surfaced [40]: it too is preventable by CHERI
capabilities!

The evaluation went on to discuss how capabilities can strengthen and enforce guarantees given by
the language, using features like capability sealing to protect data given to cross-domain calls. This
protection obviates expensive measures like sandboxing, frequently considered too costly to use in
many real-world applications. I emphasise that capabilities equip Rust with powerful mechanisms for
increasing memory safety at low cost, without changing the language semantics or memory model. A
similar claim cannot be made for C, due to its weak pointer provenance model [14]. Further, I elaborate
on how capabilities interact with, and can rule out several forms of unde�ned behaviour in Rust.
Compiler transformations relying on those forms are thus safe to perform on CHERI, without concern
of violating the integrity or con�dentiality of data.

I also elucidated how Rust’s techniques complement CHERI memory safety, o�ering a clear pointer
provenance model, a safe sub-language, and complementary temporal safety guarantees. These proper-
ties make Rust code easier to compile with capabilities, enable the targeted use of capabilities to protect

41

the most vulnerable data, and avoid the most common vulnerabilities that CHERI architectures do not
currently address. Combined, these properties permit optimisations on capability usage not possible
with C codebases, showcasing the promise of combining capability architectures with safe languages.
With Rust performance comparable to that of C without capabilities, these optimisations could mean
that Rust code will run even faster than C code under capability protection. This is especially signi�c-
ant as workloads become more bounded by memory throughput, where capability overheads are most
noticeable.

Even as CHERI begins to form a foundation for its own temporal memory protection, the study of how
the architecture interacts with memory-safe languages forms a basis for realising its potential in the
larger ecosystem of modern software development. As a preliminary step, Section 5.10 covers the initial
concerns when porting safe languages to capability architectures.

6.2 Challenges

This project has not been without its challenging points. A recurring problem was the con�ict caused
by changing the pointer width to 128 bits, various aspects of which were recorded in Sections 3.3,
4.3.1 and 5.9. The issue e�ectively prevents full Rust compatibility with CHERI capabilities, and in this
project prevents the use of compiler optimisations. The de�nition is part of the language speci�cation,
and a source of some controversy in the Rust community; I put forth small, plausible changes to remove
the con�ict with CHERI. A detriment of this issue has been the inability to perform more sophisticated
evaluation of CHERI overheads in Rust, as Joannou et al. have done for C [23].

Another challenge was maintaining the relevance of the work. At �rst glance, the motivation is obvious.
Capabilities make C much safer: can they do the same for a safe language like Rust? Could they optimise
out dynamic checks like array bounds checks, leading to a measurable performance increase?

The nuances emerge when one considers Unsafe Rust, or the diverse ‘escape hatches’ in other languages.
Perhaps the relevant questions are those of where languages bene�t the most, or equally where capab-
ilities are least useful. The dearth of literature studying capabilities under safe programming languages
does not help; indeed the proposition that capabilities are less obviously useful for safe languages seems
increasingly reasonable. These serve to illustrate the value of segmenting safe and unsafe code and
enabling �ne-grained protection in the language (Sections 5.5.4 and 5.8).

6.3 Scope of contributions

This project was principally concerned with the challenges that arise from bringing a safe language
to the CHERI architecture, and how they interact with each other. In providing an account of these
concerns, it made a number of contributions:

• Patches to the Rust compiler and core libraries enabling support for CHERI capabilities, without
compiler optimisations. Details of the necessary further work to fully support a CHERI target,
including the language design choices which pose problems for this task. These modi�cations
formed the basis on which I evaluated Rust on CHERI.

• Veri�cation that the modi�ed compiler produces programs which use capabilities, by demon-
strating capability protection against previous vulnerabilities. Analyses of these and other
vulnerabilities, which were all present in the Rust core library, showing that capabilities are
e�ective in fully mitigating the errors.

• An evaluation of the interactions between Rust and CHERI protection mechanisms, focussed

42

on how the two complement each other to provide stronger memory safety guarantees. I elu-
cidated how CHERI provisions such as capability sealing bring new memory safety properties
to Rust, especially the means to enforce previously-unenforceable invariants on which Rust
predicates its memory safety guarantees.

• The evaluation further investigated approaches that reduce the overheads posed by these
memory protection mechanisms without reducing memory safety. It proposed con�gurations
that avoid unnecessary duplication of strong protections, but instead work to reinforce the
most vulnerable points of Rust programs: the use of unsafe code and cross-domain calls. Further,
I highlighted the trade-o�s of di�erent combinations of protection techniques and how they
a�ect memory safety, crucial factors for implementers bringing Rust to CHERI.

• I addressed details of the Rust language and implementation that currently prevent full Rust
compatibility with CHERI. Of speci�c interest is the de�nition of usize in the language,
changes to which would need to be put to the Rust community. Also discussed is how di�er-
ent aspects of protection and implementation might apply to other safe languages and their
runtimes, providing insight into CHERI’s implications for the wider software development
ecosystem.

6.4 Further work

6.4.1 Pointer-width sized indices

Changes to Rust semantics

Section 5.9 considered Rust’s usize de�nition (“pointer-sized integer”), why this is not desirable, and
explored alternatives. As this is both a semantic and performance issue on CHERI (Section 4.3.1), it
should be a priority to resolve this de�nition.

Nevertheless, this is not a straightforward task. A unilateral change would involve large divergences
from the upstream code, as the pointer width and index sizes are implicitly used interchangeably in
the Rust compiler. Since such a change a�ects the Rust semantics, and potentially introduces new
types, it inevitably will have to be proposed via the Rust RFC system. The issue has been discussed
before [63, 54]; I suggest that the least controversial change would be to reinterpret the current rule
and leave the introduction of any new types for a later e�ort. This could take a signi�cant amount of
time and human e�ort to e�ect, and is entirely beyond the scope of this exploratory work.

Implementation in the compiler

This change could then be implemented in the compiler. As noted above, this would be challenging to
do without �rst achieving consensus on the semantics.

While there are numerous references that do not fully distinguish between pointer size and index
size, the CTSRD project has experience resolving similar issues in Clang and LLVM, showing that the
problem is not insurmountable.

6.4.2 Runtime and memory overhead analysis

This work demonstrated that Rust protections can work alongside CHERI capabilities and explored the
safety and semantic implications. However, the runtime and memory overheads of CHERI have not
been explored.

43

Approaches

To measure runtime overheads, a possibility is to compare against a MIPS FreeBSD target, which I
include in the patches provided in this project. These should compile any Rust program with optim-
isations, although it should be noted that Rust releases are not tested against the MIPS64 Linux and
amd64 FreeBSD targets from which this derives [43]. The major reason this comparison is not cur-
rently possible is the lack of optimisations, and performance issues caused by 128-bit index sizes (see
Section 6.4.1), both beyond the scope of this work.

For memory overheads, similar techniques to those employed by Joannou et al. [23] can be used, by core-
dumping Rust programs. Another plausible approach might be to use Rust’s Mid-level IR interpreter
(Miri) to track heap pointers, and compute overheads from there. This would give precise measurement
of overheads, as well as present an e�ective memory analysis tool for Rust code running on any
platform.

6.4.3 Fine-grained capability protection

Previous Rust bugs resulting in memory vulnerabilities occur in unsafe code. This is because Safe Rust
does not have the expressivity to dereference memory except in speci�c ways, including arrays and
structs. Further, the Rust developers are keen to uphold the tenet that Safe Rust should never exhibit
unde�ned behaviour, and on multiple occasions have removed or marked unsafe code which violated
this assumption. They do so on the grounds that this is incorrect behaviour.

It is therefore reasonable to assume that this will continue, and Rust vulnerabilities relating to memory
protection will only occur through the use of Unsafe Rust.

Approaches

Section 5.5.4 suggested how certain Rust types requiring particularly sensitive handling could be pro-
tected by capabilities, and Section 5.8 examined the implications of protecting objects reachable by
unsafe code. In both cases, using regular pointers for the remaining objects could reduce the memory
overheads of capabilities on Rust programs.

Both would be challenging to implement, as Rust would �rst need to be extended to support multiple
LLVM address spaces, then additional provenance analysis would be needed to determine which objects
should be protected.

However, the bene�ts are sizeable if non-capability pointers could be used widely: this would result
in lower memory overheads than C programs, for instance. This is also safer than focussing capability
protection on risky C libraries,1 as provenance is far clearer in Rust, obviating the possibility of other
unchecked code interfering with the capability protection.

1Such as image and video codecs

44

Bibliography

[1] CVE - CVE-2018-1000622. Available from MITRE, CVE-ID CVE-2018-1000622, 2018. Accessed:
2019-04-25.

[2] CVE - CVE-2018-1000657. Available from MITRE, CVE-ID CVE-2018-1000657, 2018. Accessed:
2019-04-12.

[3] CVE - CVE-2018-1000810. Available from MITRE, CVE-ID CVE-2018-1000810, 2018. Accessed:
2019-04-12.

[4] CVE - CVE-2019-12083. Available from MITRE, CVE-ID CVE-2019-12083, 2019. Accessed: 2019-
05-31.

[5] Jorge Aparicio. rust-san. [Online] https://github.com/japaric/rust-san, 2017. Accessed: 2019-05-01.

[6] Alexis Beingessner. You can’t spell trust without Rust. Master’s thesis, Carleton University,
Ontario, 2015.

[7] David Elliott Bell and Leonard J LaPadula. Secure computer system: uni�ed exposition and Multics
interpretation. Technical report, ESD/AFSC, Hanscom AFB, Bedford MA 01731, 1975. ESD-TR-75-
306.

[8] Christophe Biocca. `std::vec::IntoIter::as_mut_slice` borrows `&self`, returns `&mut` of contents.
[Online; Rust issue #39465] https://github.com/rust-lang/rust/issues/39465, 2017. Accessed: 2019-
04-23.

[9] Sergi Blanco-Cuaresma and Emeline Bolmont. What can the programming language Rust do for
astrophysics? Proceedings of the International Astronomical Union, 12(S325):341–344, 2016.

[10] Jim Blandy and Jason Orendor�. Programming Rust. O’Reilly Media, Inc., 2017.

[11] Jay Bosamiya, Serhiy Storchaka, Leo Kirotawa Silva, Larry Hastings, and Victor Stinner. Issue
30657: [security] CVE-2017-1000158: Unsafe arithmetic in PyString_DecodeEscape. [Online]
https://bugs.python.org/issue30657, 2017. Accessed: 2019-05-30.

[12] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan Wood-
ru�, A. Theodore Markettos, J. Edward Maste, Robert Norton, Stacey Son, Michael Roe, Simon W.
Moore, Peter G. Neumann, Ben Laurie, and Robert N.M. Watson. CHERI JNI: Sinking the Java
security model into the C. SIGOPS Oper. Syst. Rev., 51(2):569–583, April 2017.

[13] Alex Crichton. std: Check for over�ow in `str::repeat`. [Online; Rust pull request #54399] https:
//github.com/rust-lang/rust/pull/54399, 2018. Accessed: 2019-04-23.

[14] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann, Simon W. Moore,
John Baldwin, David Chisnall, James Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre

45

https://github.com/japaric/rust-san
https://github.com/rust-lang/rust/issues/39465
https://bugs.python.org/issue30657
https://github.com/rust-lang/rust/pull/54399
https://github.com/rust-lang/rust/pull/54399

Joannou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo Mazzinghi, Edward To-
masz Napierala, Robert M. Norton, Michael Roe, Peter Sewell, Stacey Son, and Jonathan Woodru�.
CheriABI: Enforcing valid pointer provenance and minimizing pointer privilege in the POSIX
C run-time environment. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS ’19, pages 379–393,
New York, NY, USA, 2019. ACM.

[15] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hardbound: Architectural
support for spatial safety of the C programming language. SIGOPS Oper. Syst. Rev., 42(2):103–114,
March 2008.

[16] Derek Dreyer. RustBelt. [Online] http://plv.mpi-sws.org/rustbelt/, 2019. Accessed: 2019-05-07.

[17] Sebastian Dröge. Speeding up RGB to grayscale conversion in Rust by a factor of 2.2 – and various
other multimedia related processing loops. [Online] https://coaxion.net/blog/2018/01/speeding-
up-rgb-to-grayscale-conversion-in-rust-by-a-factor-of-2-2-and-various-other-multimedia-
related-processing-loops/, 2018. Accessed: 2019-04-25.

[18] Steven Fackler. Fix capacity comparison in reserve. [Online; Rust pull request #44802] https:
//github.com/rust-lang/rust/pull/44802, 2017. Accessed: 2019-05-02.

[19] Brent Fulgham, Isaac Guoy, et al. The Computer Language Benchmarks Game. [Online] https:
//benchmarksgame-team.pages.debian.net/benchmarksgame/, 2019. Accessed: 2019-04-25.

[20] Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, and Nicholas D Matsakis. GPU
programming in Rust: Implementing high-level abstractions in a systems-level language. In 2013
IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum,
pages 315–324. IEEE, 2013.

[21] Felix S Klock II. `core::iter`: �x bug uncovered by arith-over�ow. [Online; git commit] https:
//github.com/pnkfelix/rust/commit/f0404c39f272868c1dedc7cda7b0b6d�cb5713d, 2015. Accessed:
2019-04-25.

[22] Felix S Klock II. Implement arithmetic over�ow changes. [Online; Rust pull request #22532]
https://github.com/rust-lang/rust/pull/22532#issuecomment-75168901, 2015. Accessed: 2019-04-
25.

[23] Alexandre Joannou, Jonathan Woodru�, Robert Kovacsics, Simon W. Moore, Alex Bradbury,
Hongyan Xia, Robert N. M. Watson, David Chisnall, Michael Roe, Brooks Davis, Edward Napier-
ala, John Baldwin, Khilan Gudka, Peter G. Neumann, Alfredo Mazzinghi, Alexander Richardson,
Stacey Son, and A. Theodore Markettos. E�cient tagged memory. In 2017 IEEE International
Conference on Computer Design (ICCD), pages 641–648, Nov 2017.

[24] Jesse Jones. seg fault pushing on either size of a VecDeque. [Online; Rust issue #44800] https:
//github.com/rust-lang/rust/issues/44800, 2017. Accessed: 2019-04-12.

[25] Ralf Jung. Stacked Borrows Implemented. [Online] https://www.ralfj.de/blog/2018/11/16/stacked-
borrows-implementation.html, 2018. Accessed: 2019-05-30.

[26] Ralf Jung. vec_deque::Iter has unsound Debug implementation. [Online; Rust issue #53566]
https://github.com/rust-lang/rust/issues/53566, 2018. Accessed: 2019-04-23.

[27] Ralf Jung and Alan Je�rey. Provenance: Rust unsafe code guidelines. [Online] https://github.com/
rust-lang/unsafe-code-guidelines/issues/52, 2018. Accessed: 2019-05-22.

46

http://plv.mpi-sws.org/rustbelt/
https://coaxion.net/blog/2018/01/speeding-up-rgb-to-grayscale-conversion-in-rust-by-a-factor-of-2-2-and-various-other-multimedia-related-processing-loops/
https://coaxion.net/blog/2018/01/speeding-up-rgb-to-grayscale-conversion-in-rust-by-a-factor-of-2-2-and-various-other-multimedia-related-processing-loops/
https://coaxion.net/blog/2018/01/speeding-up-rgb-to-grayscale-conversion-in-rust-by-a-factor-of-2-2-and-various-other-multimedia-related-processing-loops/
https://github.com/rust-lang/rust/pull/44802
https://github.com/rust-lang/rust/pull/44802
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://github.com/pnkfelix/rust/commit/f0404c39f272868c1dedc7cda7b0b6dffcb5713d
https://github.com/pnkfelix/rust/commit/f0404c39f272868c1dedc7cda7b0b6dffcb5713d
https://github.com/rust-lang/rust/pull/22532#issuecomment-75168901
https://github.com/rust-lang/rust/issues/44800
https://github.com/rust-lang/rust/issues/44800
https://www.ralfj.de/blog/2018/11/16/stacked-borrows-implementation.html
https://www.ralfj.de/blog/2018/11/16/stacked-borrows-implementation.html
https://github.com/rust-lang/rust/issues/53566
https://github.com/rust-lang/unsafe-code-guidelines/issues/52
https://github.com/rust-lang/unsafe-code-guidelines/issues/52

[28] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing the
foundations of the Rust programming language. Proc. ACM Program. Lang., 2(POPL):66:1–66:34,
December 2017.

[29] Steve Klabnik, Ben Striegel, et al. Implement address sanitizer (ASAN) support. [Online] https:
//github.com/rust-lang/rfcs/issues/670, 2017. Accessed: 2019-05-01.

[30] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, Jr., and Andre DeHon. Low-fat
pointers: Compact encoding and e�cient gate-level implementation of fat pointers for spatial
safety and capability-based security. In Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security, CCS ’13, pages 721–732, New York, NY, USA, 2013. ACM.

[31] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann Härtig. Sandcrust:
Automatic sandboxing of unsafe components in Rust. In Proceedings of the 9th Workshop on
Programming Languages and Operating Systems, PLOS’17, pages 51–57, New York, NY, USA, 2017.
ACM.

[32] Chris Lattner. LLVM Project Blog: What Every C Programmer Should Know About Unde�ned
Behavior #2/3. [Online] http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_
14.html, 2011. Accessed: 2019-05-20.

[33] Yi Lin, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. Rust as a language for
high performance GC implementation. In Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management, ISMM 2016, pages 89–98, New York, NY, USA, 2016. ACM.

[34] LLVM Project. LLVM Language Reference Manual—LLVM 9 documentation. [Online] https:
//llvm.org/docs/LangRef.html, 2019. Accessed: 2019-04-12.

[35] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall,
Robert NM Watson, and Peter Sewell. Into the depths of C: elaborating the de facto standards. In
ACM SIGPLAN Notices, volume 51, pages 1–15. ACM, 2016.

[36] National Institute of Standards and Technology Information Technology Laboratory. NVD -
Statistics. [Online] https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_
type=statistics&query=over�ow&search_type=all&pub_start_date=01%2F01%2F2018&pub_end_
date=12%2F31%2F2018, 2019. Accessed: 2019-04-02.

[37] Peter G Neumann. Fundamental trustworthiness principles. In Howard Shrobe, David L Shrier,
and Alex Pentland, editors, New Solutions for Cybersecurity. MIT Press, Cambridge, MA, Jan 2018.

[38] The Rust Core Team. Security advisory for rustdoc. [Online] https://blog.rust-lang.org/2018/07/
06/security-advisory-for-rustdoc.html, 2018. Accessed: 2019-04-25.

[39] The Rust Core Team. Security advisory for the standard library. [Online] https://blog.rust-
lang.org/2018/09/21/Security-advisory-for-std.html, 2018. Accessed: 2019-04-12.

[40] The Rust Core Team. Security advisory for the standard library. [Online] https://blog.rust-
lang.org/2019/05/13/Security-advisory.html, 2019. Accessed: 2019-05-27.

[41] The Rust Project Developers. Leaking. [Online] https://doc.rust-lang.org/nomicon/leaking.html,
2019. Accessed: 2019-04-29.

[42] The Rust Project Developers. Meet Safe and Unsafe. [Online] https://doc.rust-lang.org/nomicon/
meet-safe-and-unsafe.html, 2019. Accessed: 2019-04-10.

47

https://github.com/rust-lang/rfcs/issues/670
https://github.com/rust-lang/rfcs/issues/670
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=overflow&search_type=all&pub_start_date=01%2F01%2F2018&pub_end_date=12%2F31%2F2018
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=overflow&search_type=all&pub_start_date=01%2F01%2F2018&pub_end_date=12%2F31%2F2018
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=overflow&search_type=all&pub_start_date=01%2F01%2F2018&pub_end_date=12%2F31%2F2018
https://blog.rust-lang.org/2018/07/06/security-advisory-for-rustdoc.html
https://blog.rust-lang.org/2018/07/06/security-advisory-for-rustdoc.html
https://blog.rust-lang.org/2018/09/21/Security-advisory-for-std.html
https://blog.rust-lang.org/2018/09/21/Security-advisory-for-std.html
https://blog.rust-lang.org/2019/05/13/Security-advisory.html
https://blog.rust-lang.org/2019/05/13/Security-advisory.html
https://doc.rust-lang.org/nomicon/leaking.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html

[43] The Rust Project Developers. Rust Platform Support. [Online] https://forge.rust-lang.org/platform-
support.html, 2019. Accessed: 2019-05-27.

[44] The Rust Project Developers. The Rust Programming Language. [Online] https://doc.rust-lang.
org/1.33.0/book/, 2019. Accessed: 2019-04-04.

[45] The Rust Project Developers. The Rust Reference. [Online] https://doc.rust-lang.org/reference/,
2019. Accessed: 2019-05-20.

[46] The Rust Project Developers. usize. [Online] https://doc.rust-lang.org/std/primitive.usize.html,
2019. Accessed: 2019-05-28.

[47] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. AddressSan-
itizer: A fast address sanity checker. In Proceedings of the 2012 USENIX Annual Technical Conference
(USENIX ATC ’12), pages 309–318, 2012.

[48] Joseph Siefers, Gang Tan, and Greg Morrisett. Robusta: Taming the native beast of the JVM. In
Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS ’10, pages
201–211, New York, NY, USA, 2010. ACM.

[49] Arthur Silva. Avoid bounds checking at slice::binary_search. [Online; Rust pull request #30917]
https://github.com/rust-lang/rust/pull/30917, 2016. Accessed: 2019-04-25.

[50] Laurent Simon, David Chisnall, and Ross Anderson. What you get is what you C: Controlling side
e�ects in mainstream C compilers, 2018.

[51] Björn Steinbrink. Improve PartialEq for slices. [Online; Rust pull request #26884] https://github.
com/rust-lang/rust/pull/26884, 2015. Accessed: 2019-04-25.

[52] Ulrik Sverdrup. indexing. [Online; Rust crate] https://docs.rs/indexing/0.3.2/indexing/, 2018.
Accessed: 2019-04-25.

[53] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in memory. In 2013 IEEE Symposium
on Security and Privacy, pages 48–62, May 2013.

[54] Aaron Turon, Yehuda Katz, et al. Restarting the `int/uint` Discussion. [Online] https://internals.
rust-lang.org/t/restarting-the-int-uint-discussion/1131/191, 2015. Accessed: 2019-05-27.

[55] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-Lezama. Towards
optimization-safe systems: Analyzing the impact of unde�ned behavior. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 260–275. ACM, 2013.

[56] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum: Practical
capabilities for UNIX. In Proceedings of the 19th USENIX Conference on Security, USENIX Security
’10, pages 3–3, Berkeley, CA, USA, 2010. USENIX Association.

[57] Robert N. M. Watson, David Chisnall, Brooks Davis, Wojciech Koszek, Simon W. Moore, Steven J.
Murdoch, Peter G. Neumann, and Jonathan Woodru�. Capability Hardware Enhanced RISC
Instructions: CHERI Programmer’s Guide. Technical report, University of Cambridge Computer
Laboratory, September 2015. UCAM-CL-TR-877.

[58] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodru�, Michael Roe, Jonathan Anderson,
John Baldwin, David Chisnall, Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W. Moore,
Steven J. Murdoch, Robert Norton, Stacey Son, and Hongyan Xia. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (version 6). Technical report, University
of Cambridge Computer Laboratory, April 2017. UCAM-CL-TR-907.

48

https://forge.rust-lang.org/platform-support.html
https://forge.rust-lang.org/platform-support.html
https://doc.rust-lang.org/1.33.0/book/
https://doc.rust-lang.org/1.33.0/book/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/std/primitive.usize.html
https://github.com/rust-lang/rust/pull/30917
https://github.com/rust-lang/rust/pull/26884
https://github.com/rust-lang/rust/pull/26884
https://docs.rs/indexing/0.3.2/indexing/
https://internals.rust-lang.org/t/restarting-the-int-uint-discussion/1131/191
https://internals.rust-lang.org/t/restarting-the-int-uint-discussion/1131/191

[59] Robert N. M. Watson, Jonathan Woodru�, Peter G. Neumann, Simon W. Moore, Jonathan Ander-
son, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch,
Robert Norton, Michael Roe, Stacey Son, and Munraj Vadera. CHERI: A hybrid capability-system
architecture for scalable software compartmentalization. In 2015 IEEE Symposium on Security and
Privacy, pages 20–37, May 2015.

[60] Jonathan Woodru�, Robert N.M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson,
Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton, and Michael Roe. The CHERI
capability model: Revisiting RISC in an age of risk. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, pages 457–468, Piscataway, NJ, USA, 2014. IEEE
Press.

[61] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and Imple-
mentation, PLDI ’98, pages 249–257, New York, NY, USA, 1998. ACM.

[62] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki
Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A sandbox for portable, untrusted
x86 native code. In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, SP ’09,
pages 79–93, Washington, DC, USA, 2009. IEEE Computer Society.

[63] Richard Zhang, Aaron Turon, and Niko Matsakis. Rename `int/uint` to `isize/usize`. [Online; Rust
RFC #544] https://github.com/rust-lang/rfcs/blob/master/text/0544-rename-int-uint.md, 2015. Ac-
cessed: 2019-04-12.

49

https://github.com/rust-lang/rfcs/blob/master/text/0544-rename-int-uint.md

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Background
	The Rust programming language
	Capabilities and the CHERI architecture

	Contributions
	Report structure

	Background and related work
	Capabilities
	CHERI: Capability Hardware Enhanced RISC Instructions
	Memory capability model
	Implementation overview
	Capability sealing
	Using non-capability code

	Why Rust?
	Bounds checks in Rust
	Broad similarity to C
	Object lifetimes and temporal safety

	Survey of related work
	Hardbound
	AddressSanitizer
	Sandcrust: Sandboxing Rust's FFI
	Robusta: Sandboxing JNI code
	CHERI compartmentalisation and the JNI
	RustBelt: Verification of Rust's safety properties

	Context

	The Rust Programming Language
	Overview
	The Rust programming language

	Object ownership and borrow semantics
	Ownership semantics
	Caveat on memory leaks

	Definitions of pointers and indices
	Implications

	Unsafe Rust
	Optimisation with Unsafe Rust

	Array bounds checks
	Optimisation by eliding checks
	Removing bounds checks with dependent types

	Summary

	Compiling Rust for CHERI
	Strategy
	Host platform
	Rust functionality on CHERI
	Compiler optimisations

	The Rust compiler and LLVM
	Incompatibilities with the LLVM backend
	Compiler usage

	Changes to the compiler
	Pointer width of 128 bits
	Address spaces
	Targeting CHERI

	Changes to core libraries
	libcore: formatting
	libcore: UTF-8 validation
	libcore: memchr
	liballoc: macro invocation

	Summary

	Evaluation
	Objectives
	Errors leading to memory violations in Rust
	Pushing to a VecDeque: off-by-one error leads to out-of-bounds write
	Slice repeat: integer overflow leads to buffer overflow
	Out-of-bounds indexing into a reversed slice
	Iterator method violates Rust's uniqueness of shared references

	Implications of Rust semantics for CHERI targets
	Ownership gives complementary temporal safety
	Stronger pointer provenance model in Rust
	Safer code patterns yields easier porting to CHERI
	Comparable performance to C
	Larger pointer size can be offset by removing redundant bounds information

	Spatial integrity in Rust from CHERI capabilities
	Mitigation of traditional vulnerabilities
	Bounds checks removal
	Sub-object bound enforcement
	Use-after-free elimination in Safe Rust

	Capability sealing to protect Rust objects
	Preserving object immutability in Unsafe Rust
	Preserving object immutability across FFI boundaries
	Protecting data from callback functions
	Fine-grained object protection
	Efficacy and costs of sealing

	Improved safety of FFI calls
	Prevention of use-after-free from FFI
	Enforcement of object boundaries
	Protection of system calls

	Strengthening unsafety
	Rationale for Unsafe Rust
	From unsafe code to undefined behaviour
	Restricting undefined behaviour with CHERI capabilities

	Hybrid ABI: Minimising the memory footprint of CHERI capabilities
	Safe Rust is memory safe
	Pointer provenance for Unsafe Rust
	Reduction in memory overhead of capabilities
	Limitations

	Distinguishing pointer width and index sizes
	Definition of usize
	Representing every memory address
	Rust context
	Integer types in C

	Porting safe languages to capability architectures
	Weaknesses in language runtimes
	Unsafe code
	Language semantics and implementation
	Non-optimisation: type systems

	Summary

	Conclusion
	Context and review
	Challenges
	Scope of contributions
	Further work
	Pointer-width sized indices
	Runtime and memory overhead analysis
	Fine-grained capability protection

	Bibliography

